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Foreword

This final technical report concisely documents the results of a three-year research
effort undertaken by the Schools of Civil and Electrical Engineering at Purdue Univer-
sity. The primary purpose of the work has been to investigate the metric aspects
involved with digital images and digital image processing. The emphasis of the
research has been on metric fidelity of images which is the main thrust of various pho-
togrammetric tasks, dealirg with high accuracy positional information. Study of men-
suration of digital hard-copy images, which may have been subjected to digital image
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processing algorithms, is needed in order to determine the expected accuracies of metric '--_f-j
information extracted from such images. This called for a cooperative effort between NS
researchers with specialities in photogrammetry and digital image processing. SRR

The report is divided into three primary areas of research. Not coincidently, these
areas follow the tasks originally proposed for investigation. Quantitative analysis of
digital sampling of images is expounded in Chapter 1. Determining metric criteria for
evaluation of digital image processing techniques is the research described in Chapter 2.
Evaluation of varicus digital image processing techniques is documented in Chapter 3.
More specifically, Chapter 1 describes the relationship between the pixel size and the
precision and accuracy with which objects can be located by human observers using
digital hard-copy images in photogrammetric plotters. Chapter 2 describes the research
involved in developing precision edge and cross target location methods which have
subpixel accuracy. Chapter 3 documents the type and amount of metric distortion
caused by various digital image techniques such as compression, filtering, and resam-
pling. The amount of distortion is measured by those methods developed in Chapter 2.

The authors would like to thank Dr. S.J. Mock of the Army Research Office for his
continued support and guidance throughout the period of the contract. Valuable assis-
tance was provided by Dr. V.L. Anderson of Purdue University, and Dr. J.E. Unruh of
the Defense Mapping Agency Aerospace Center who made possible the use of the
Optronics film-writing equipment and provided much useful advice.

During the course of this research, the following contributed directly or indirectly
to its completion and success: Dr. A.Y. Tabatabai, Dr. J.D. Thurgood, Dr. W. Forstner,
Dr. J.S. Bethel, Mr. M.L. Akey, Mr. D.B. Cantiller, Mr. D. Davis, Mr. M. Meenehan,
Mr. B. Nickols, Mr. W.A. Oren, Mr. F. Paderes, and Mr. A. Sifaw. The authors

express their gratitude to them.
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1. Human Pointing Ability in a Digital Data Base

The efforts of this research were directed toward determining how image processing
techniques affect the metric quality of digital images. As in most research work con-
cerned with image processing, some type of criteria was established to mecasure or judge
these techniques. Toward this end, the precision of a human observer was established
and this precision was used as a standard of comparison. This section details the abil-
ity of the observer to accurately point to targets with subpixel results. In addition, the
observer consistency as well as inter-observer variability was determined.

1.1. Effects of Sampling

Preliminary work has shown the effects caused by sampling a hard-copy image to
be minimal. This work which was performed by Mikhail and Unruh [1] quantified the
measurement accuracy in human pointing ability on sampled digital images. In gen-
eral, degradation of the metric accuracy can be attributed to the artifacts produced in a
reconstructed digital image.

Synthesized aerial photographs were formed by processing a combined elevation
and orthophoto data base. These simulated photographs were digitized and written on
film with pixel sizes of 25, 50, and 100 gm. Since the image geometry was completely
controlled, image coordinates of specific targets were calculated and compared with
measured quantities. In addition, two types of targets were used. The first type
appeared as crosses in the data base prior to synthesis and each cross covered many
pixels in the digital image. The second type simulated an artificial image point (such
as a PUG mark) and was constructed by darkening a single picture element (pixel) in
the digital image.

Monoscopic measurements of single pixel targets resulted in a precision of 7 gm
regardless of pixel size (Table 1). For the 25 and 50 pm pixel spot sizes, monoscopic
measurements exhibited precisions of 8 um for multiple pixel targets. At 100 pm pixel
size, precision dropped to 17 yum. Inference can be made that as the pixel spot size was
increased, the human observer's precision degraded. However, this occurred only when
the pixel was large enough to become apparent to the observer. In these instances, the
targets appeared ‘‘blocky” to the observer.

At 25 and 50 pm pixel sizes, stereoscopic measurements of single pixel targets
showed a decrease in precision to 16 pm. However, for the cross targets at the same
pixel sizes, precision remained at 9 pm. This indicated the importance of the back-
ground features to the observer. Precision of measurement for single pixel targets was
dependent on features close to the target. For the 100 pm pixel size, the error
increased to 98 um for the single pixel targets.
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Precision and Accuracy for Monoscopic and Stereoscopic Measurements

Single Pixel Targets "Cross” Targets
Precision Accuracy Precision Accuracy
Monoscopic b4 y X y X y x y

(4m) (pm) | (pm) (sm) | (pm) (gpm) | (pm) (pm)
100 pm pixels | 7.5 3.9 91 65| 142 119 | 177 164
50 pm pixels 72 32 79 44| 94 68 {104 7.0
25 pm pixels 59 37| 138 49| 51 47 | 123 47

Stereoscopic x y X y p 4 y X y
(pm)  (pm) | (pm) (pm) | (pm) (pm) | (pm) (pm)
100 zm pixels | 152 91 187 101 32 15 35 20

50 pm pixels 22 23 24 24 11 12 12 12
25 pm pixels 13 18 13 20 6 9 7 10

Table 1.  Precision and accuracy for monoscopic and stereoscopic transfer measurements of synthetic

photographs.

These results indicate that hard-copy digital images can provide measurement pre-
cisions of 7 pm or better for monoscopic viewing and roughly 10 um for stereoscopic
viewing of multiple pixel targets appearing in both images, even with pixel sizes up to
50 pm. Therefore, given that the pixel spot size is sufficiently small, the observer may
treat hard-copy digital images as conventional photographs. In addition, the observer
is able to accurately locate targets in digital imagery with subpixel precision as low as
0.14 pixels.

1.2. Measurements of Hard-Copy Images

This phase of research concerned itself with the observer's accuracy in edge and
line location. This work was completed by Thurgood and Mikhail and described in
detail in a technical report [2] and a conference paper (Appendix A). The research
documents the effects of such factors as the observer consistency, inter-observer varia-
bility, and observer precision in the presence of noise. In addition, these results were
retained as a standard of comparison with machine methods.

A simulated test set comprised of 15 image files, was constructed. Each of the 15
files contained 4 targets and one image feature. Each file was 1024 by 1024 pixels and
was written using a 25 pm square aperture. The targets simulated fiducial marks con-
sisting of 5 by 5 crosses and the image features were either an edge or a line. Three
human observers were used to collect measurements using a stereo comparator operated
in a binocular viewing mode.

The precision in measurement of the fiducial marks for observers 1, 2, and 3 were
1.1 pm, 3.4 pm, and 2.2 um, respectively. These values expressed the 68% confidence
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limit of a measurement in x or y. No significant difference was detected between preci-

sion in x and y. However, the differences in levels of precision between observers was

found to be significant. The error in measurement to the edge within each file was

investigated using an analysis of variance model. This allowed the independent evalua-

tion for the four factors: replicate, observer, file, and location. In addition, all edge
_ errors were calculated as the normal distance to the edge. Certain relationships were
i inferred from the results and were shown to be significantly important:

+  Single observers were not consistent in edge pointing over time.

*  There existed large significant differences in measured edge locations between
observers.

*  The differences in measured edge location between observers remained consistent. -

*+  The mean error and standard deviation increased as the edge spread was increased.

*+ The mean error remained constant as the contrast in the edge was reduced, how-
ever the standard deviation increased.

*  When noise was added to the edge, edge measurement accuracy was affected, but -4
not in a consistent manner with respect to all observers. )

*+  Edge orientations affected the edge measurement when the angle of orientation was
increased from 0° to 45°. The edge measurement moved toward the darker side
of the edge when the angle was increased from 0° to 45 °.

.......
.....................................................
..............................................
.......................................




2. Automatic Extraction of Metric Information

Due to the large variance in the human precision measurements research efforts
were directed toward implementing a machine vision system that would have a lower
variance with possibly higher precision. Two target types were used for precision loca-
tion: grey level edges and crosses. Separate algorithms were developed to precisely
locate each target type. In addition, competing algorithms were implemented to deter-
mine the more robust algorithm.

2.1. Precise Location of Edges

Of particular importance to the image processing community is the ability to
detect and locate grey level edges. To date, few edge detection/location algorithms
with subpixel accuracy have been developed. Research was completed in this area
resulting in the development of three different types of precision edge locators. The
three algorithms include a grey level moment preserving edge locator, an edge locator
which uses least squares adjustment, and a spatial moment edge locator. The first two
edge locators, the moment preserving and the least squares adjustment, are described in
the following two subsections. Comparison is made between these two operators in the
third subsection. The spatial moment operator is described in the last subsection.

2.1.1. Grey Level Moment Preserving Edge Location

Tabatabai and Mitchell have developed an edge location method which determines
edge locations to subpixel accuracy. The method uses the grey level moments from a
window of data. These moments are matched to the first, second, and third order grey
level statistics of an ideal continuous edge. Additionally, the operation is insensitive to
multiplicative and additive changes in the grey level data. Documentation of this
research [3] is in Appendix B.

An ideal edge can be characterized by two grey level values h; and h, where h, is
the lower brightness level and h, is the higher brightness level. The first, second, and
third order moments (m;) are determined by

m; = thi + P2h‘i’ =123 (1)

where p; and p, are the probabilities or proportions of the grey values h, and h, that
are present in the data, and are given by

prt =1 (2)

The parameters p,, p,, hy, and h, can be solved in terms of the moments, i.e.,

by = my = o (Z2)1/ @
h
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by = my + o (212 (4
P2
1 ]
=—=(1+ 5
P ) ( 2+ 4 (5)
1 ]
== (1= —) 6
P2 ) ( \/;2—_‘_—2 (8)
where
m; + 2mJ-3m;m,
s = 7
3 (M
and
0? = m, -~ m{ (8)

For discrete sampled data, x;, i=1,2, - * - ,n the moments may be calculated by the
equation

n .
m==Yx =123 (©)

If the ordered data x; is either monotonically nondecreasing or nonincreasing, then
the edge location is

1=k = pn (10)
where the first data sample is located at j =-§- (all samples have a spacing of one). In

general, p; is noninteger, thus the location 7 is a subpixel measurement. It can be
shown that the sample skewness

1 o, (x—-m;)°

§=;§T (11)

is equal to the 's” in Eq.(7). The conclusion can be made that the edge location is a

function of sample skewness only. Since the sample skewness is invariant to additive
and multiplicative changes, the edge location is invariant to the same.

In the presence of additive, zero-mean Gaussian noise, the edge location is biased
toward the center of the window. This is verified by empirical methods in addition to
being derived theoretically.

The one-dimensional edge operator can be extended to two dimensions by using
the grey levels within a circular window. The sample moments are

mk = plhlk + chzk !k=o: 1’213 (12)

where

-t -

l..
-
M
.
A
L.

W, eXN

APV TV TV I

t
Ak

D
PPN
A a e s

0
()
»

.
4 .
3,000

. .
_aa® at



= (13)
and

p2=1-p (14)
A, is that area of the circle covered by the grey level hy. The values of py, p5, h,, and
hy can now be obtained from Eq.(3) - Eq.(8). For a circle of unity radius and an arbi-

i trary angle 0 < < 7/2, the area A is given by
A=ﬂ-—;-sinﬂ (15)
Combining Eq.(13) and Eq.(15) and allowing
p = min(py,p;) (16)
results in
e %sin 28 =np (17)

This result is transcendental and a numerical approximation is needed to solve for f.
However, since this equation is extremely smooth (derivatives of all orders exist), a sim-
ple look-up table method which uses linear interpolation is sufficient to obtain quick
and accurate results. The length to the edge is simply

§ =cosp (18)

As mentioned before, the length is a subpixel result and is invariant to additive and
multiplicative changes in the grey level data.

2.1.2. Edge Location using Least Squares Adjustment

A process for edge location using a least squares approach has been developed by
Thurgood and Mikhail [4,5] (and Appendix A). This approach results in very precise
locations when the initial parameter estimates are good.

Let {(s,t) represent an ideal picture function. In this case, f(s,t) is the ideal edge
function. If the picture function is image using a linear, spatially invariant system with
a normalized point-spread function p(s,t), the output of the system is simply the convo-
lution of f(s,t) and p(s,t). Let the random variable {(s,t) be the output at coordinate

(S,t),
00
f(st) = [ [ f(¢v)p(x—¢,t-v) dgdv
-0
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= f(s,t) * p(s,t) (19)

where * denotes the convolution operation. Given that f(s,t) can be parameterized, the S
above equation can be transformed into a single condition equation for the model
known as Adjustment by Indirect Observations. The set of equations (one equation for

each 0(i,j)) can be solved by forming normal equations. The transform is determined

by optimizing the coefficients of the convolution of the ideal picture function and
point-spread function. Initial estimations of these coefficients are used and a correction
matrix is produced. This is repeated using the correction values until the estimates of

b the parameters of ideal picture function converge.
Let {(s,t) be completely characterized by a set of u parameters X over the region of ' *
interest, then Eq.(19) may be written as e
Bls,t) — f(s,4:%) * pls,t) =0 (20) R
or for simplicity ‘.“‘“
f(s;t) + F(x) =0 (21) -

where F(x) = —f(s,t;x) * p(s,t). The picture element (i,j) which is a sample of f(s,t) at
s =s;, t =t; may be written in the linearized form of Eq.(22) as

93 + v; + Bij A= —Fij(x") (22)
where § is the initial estimate for the observation, v;; is the measurement residual, B;
is the set of partial derivatives of F;(x) with respect to the parameters, evaluated at
x =x% x% is the set of initial parameter approximations, and A is the set of corrections
to the parameter approximations. Equation (22) represents a single condition equation
for the model known as Adjustment by Indirect Observations. If the region of interest

contains n pixels, the total set of condition equations may be written using matrix
notation as

£°+yv+BA=-Ekx" (23) .
The stochastic information associated with the measurements is characterized by the .
covariance matrix ¥. The corresponding cofactor matrix Q =(1/o¢) L is often used for

convenience, with o being the reference variance. The corrections A to the parameter
approximations may then be calculated by solving the normal equations

BQ'BA=BQ'S (24)

where ¢ = - [(% + F(x%)]. The nonlinearity of the condition equations requires an itera-
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tive adjustment procedure, relinearizing at updated parameter values and continuing
until the solution converges.
The ideal picture function, f(s,t), can represent any picture feature that can be .;j:'.:_::I:
parametrized. For a one-dimensional edge, the parameters are the lower step edge '.jjz'.:j;i
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height h,, the upper step edge height h,, and the position at which this transition
occurs x. For a line feature (or pulse) the parameters include hy, hy, x, and w the
width of the line. In two dimensions, the parameters for an edge are h;, h,, x, and the
angle, 0, the edge makes with the t-axis. The line parameters include h;, hy, x, 8, and
the line width, w.

Parameters of the point-spread function may also be estimated if the form of the
spread is known. This research has considered two types of spread functions, rectangu-
lar and Gaussian. Given that the point-spread function is centered over each pixel
both functions can be parametrized by a single parameter d.

2.1.8. Empirical Analysis of Moment and Least Squares Edge Locators

Tests using both edge locating algorithms were carried out on sets of simulated
one-dimensional signals containing various amounts of random noise [2]. In general, the
precision of the edge estimates decreased as the noise level increased. At a noise-to-
signal level of 10%, both algorithms achieved root mean square errors of less than 0.04
sampling intervals in data with an edge spread of four sampling intervals.

In addition, the two-dimensional test base used in the human observation testing
were used. For the least squares implementation, errors in edge location estimates were
less than 0.050 pixels for symmetric ramp-type edges with high contrast. Angle errors
were typically less than one-half of a degree. Errors up to 0.20 pixels occurred in non-
symmetric edge data and were consistently to the lighter side of correct edge location.
These errors were a result of fitting a non-symmetric type edge function to the modeled
symmetric function. Additionally, large errors were recorded from noisy data.

The grey level moment preserving method and Hueckel method [6,7,8] were
applied to the same data. These methods require no iteration as in the least squares
approach. However, both methods show a bias in the presence of noise which is
greatest away from the center of the window of data. Therefore, both methods were
implemented using an iterative procedure to ensure that the edge occurred within one
pixel of the center of the window.

Errors in the edge location estimates were less than 0.050 pixels for high contrast,
symmetric edge data. The Hueckel operator tends to point towards the lighter side of
the edge when compared {o the grey level moment preserving method. Larger errors
were associated with asymmetric edges and with files which contained large amounts of
noise. For noiseless cases, the two operators estimated orientation nearly perfectly with
only one exception at 22.5° with error of 0.8°.

2.1.4. Spatial Moment Based Two-Dimensional Edge Operator

An edge detector and locator which has been developed by Reeves, et. al. (Appen-
dix C) matches a circular section of an image to an ideal step edge model using two-
dimensional moments. This method requires no iteration and can locate edges to sub-
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pixel accuracy. In addition, this method is much simpler to implement than the
Hueckel operator and appears to allow more accuracy and noise immunity.

An ideal edge model is characterized by four parameters h, k, § and 6. The edge is
a straight line which separates two regions of constant grey values. The lower level has
height h and the upper level is k higher than the lower level. The angle which the edge
makes with the y axis is 6 and { is the distance from the center of the disk to the edge.

The moments of an image f(x,y) of order p +q are defined by
M,, = [ [ xPy3f(x,y)dxdy (25)

The disk is defined to have radius of one. Thus, the limits of integration are the unit
circle i.e., VxZ+y? < 1.

A rotation of the disk by an angle ¢ changes the moments as specified by

r=0s5=0

The angle 8 which is the angle of the edge is determined by

Mo
0 = tan™! — (27)
Mo
In order to determine the other edge model parameters, the moment set is rotated by
the angle # until the potential edge is aligned with the y axis.

The location of the edge, ¢, may be derived from the rotated moments. The
moments may be specified in terms of h, k and { by integrating.

1 1
Mg = 2h [ V1-x%dx + 2k [ V1-x%dx
kA ]

= hr + -'521 ~ k sin"!(0) - k§ VI (28)

1 1
My = 2h [ xV1-x2%dx + 2k [ xV1-x%dx
4 1

= -;- k V(14?)? (29) ’

1 1
My = 2h [ x% V1—x%dx + 2k [ x? V1-x%dx
4 0

~ e ey
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=hr 581 + -‘;—9 V22

- X VI + sin”) (30)
Equations (28), (29) and (30) may now be combined to solve for {, i.e.
' 3 ' 1 [ .
Mmzszlo"IMoo (31)
Mgy — M,
= ——20-—'-—}2- (32) i
3M;o L

The ideal edge that is fit to the data does not allow for the quantization effects due
to finite pixel size in the real data; i.e., the gray value is assumed constant over each EAEN
pixel in the real data. This introduces a bias error in the calculated edge location. o B
Although this bias appears significant, the calculated edge location versus true edge _’j,. ey
location is always a monotonic function, and thus a table look-up procedure can be
used to subtract this bias effect and give perfect edge location results when no noise is
present.

The edge operator was applied to noisy edge data. In the presence of noise, the
operator was unbiased and performed quite well. Most edge locations (68%) were
found to within 0.2 pixels of their correct location when the center of a circular window
of 9 pixels was within 2.5 pixels of the edge and the signal-to-noise ratio was 20 db.
Unfortunately, this edge operator was developed at a different time than the previous
two operators and therefore was not evaluated against them.

2.2. Precision Cross Target Location

The main task of this effort was composed of two steps: the detection and approxi-
mate location of the cross target, and the precise determination of the center of the tar-
get using the least square algorithm. Detailed documentation of the first step can be
found in Appendix D and Appendix E. Detailed documentation of the second step can
be found in the aforesaid appendices and in reference [9].

The approach that was taken incorporated an automated procedure based upon pattern
recognition and feature extraction techniques which would scan an entire image and
produce the initial locations of all crosses. These initial values were then used by the
least squares algorithm which modeled a cross feature to determine precise cross loca-
tions. ®
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2.2.1. Pattern Recognition of Crosses

A method has been developed to detect and recognize cross targets in digital aerial
imagery. The method accomplishes these tasks by extracting two major features from
the ground data. Local grey level maxima which correspond to possible cross targets
serve as the detection feature. The Fourier descriptors of the contour of these targets
provide recognition of the cross as well as approximate location, orientation, and cross
size.

To implement local maxima detection, two processes are needed. First, to insure
that true bright regions are detected and not those maxima that are attributable to
system noise, atmospheric effects, etc., a circular convolutional low pass filter is applied
to the data. Assuming that the size of the convolving filter window is smaller than the ® '
smallest expected cross, the grey level structure of the filter cross can be viewed as a n
local maximum in two dimensions. These points serve as input to the recognition
phase of the algorithm.

The recognition phase accomplishes two tasks. First, the process discriminated L
buildings, road intersections, and other physical objects from crosses since these objects
may be two-dimensional local maximums. Second, given that the object is a cross, the
process determines the location, orientation, and size of the cross.

Recognition is accomplished using Fourier descriptors. to obtain the Fourier
descriptors of an object, the original unfiltered image must be grey value thresholded to Zj
yield a binary image. If the threshold is chosen correctly, the object will be segmented
from the background data. Typically, many thresholds are tried to successfully seg-
ment the data. A Fourier transform is applied to the contour or boundary of the seg- S
mented object to produce the object's Fourier coefficients. The coefficients (descriptors) !—-\-4
are normalized for comparison to the coefficients of a ‘‘true” cross. If the descriptors '
match those of a cross within a specified accuracy, the object is classified as a cross. If
the descriptors do not match, another grey level threshold is selected for segmentation
until the descriptors match or until all the possible thresholds have been exhausted in
which case the object is rejected as a cross. In addition, the Fourier coefficients deter-
mine location, orientation, and size information.

2.2.2. Location using Moments

ing pixels according to the location and orientation of the cross. Since the grey values
of the pixels hold much of this information, a process which uses the grey levels of the ‘
cross as well as the general shape should do well in estimating location and orientation. e

In general, the cross’ grey level heights (h; and hy) are distributed among neighbor- ' ]

1

]

The two-dimensional grey level moments meet this requirement. ;

A window of data is extracted from the original image. The location of the center
of the window is determined from the Fourier descriptor location results (recognition
routine). The two-dimensional moments of the window are calculated. The normalized
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first order moment in x and in y, respectively, determine the center of mass of the win- i
dow. Since the cross is symmetric, this is the final estimate of the cross location. After S
the moments are translated to this location, rotational moments are used to determine ' ) -

3 the angle of the cross. Finally, the background grey level is determined by the average
grey level around the cross, not including the cross, and the grey level of the cross is
- estimated by the grey level at the center of the cross.

2.2.3. Location using Fourier Descriptors

This method of determining location is similar to that used in the recognition
3 phase of the algorithm. To determine accurate location and orientation of the cross,
many grey level thresholds are used. Each grey level threshold produces a contour and
therefore an estimate of the cross’s location and orientation. Of those thresholds that
3 produce acceptable Fourier descriptor results, only the best descriptor results are
retained. Since the Fourier descriptor error measures the match to an ideal cross, the
error may be used as a confidence number. The lower the error, the greater the
confidence. This confidence number may then be used as a multiplicative weight with
which to multiply the location result. Likewise, the final orientation angle is estimated
using these weights, also.

Each location determined by the Fourier descriptors is a sub-pixel result. The pro-
cess of using a weighted average of each contour center results in a surprisingly good
center location with much more credence than from only one Fourier descriptor result.
This technique is remarkably similar to the moment technique in one important way.
The grey level moments use a continuum of grey values summed according to the
moment basis functions to produce the center of mass, and thus the center of the cross.
Likewise, the Fourier descriptors use a continuum of grey level thresholds to produce
different centers of contour locations. These locations are weighted and summed to
produce the location of the cross. However, only those Fourier descriptors results
which match a cross are kept. This selective process removes those contours which are
greatly affected by noise. The grey level moments, on the other hand, cannot be mani-
pulated in this way, and must use all grey values.

2.2.4. Evaluation using Arizona Data Base

A test image was obtained by generating cross targets on a digital image using the
Arizona test data. This test data was derived from a digitized stereo model formed by
two nearly vertical images taken in October 1966 near Guadelupe, Arizona. A cross
was generated by integrating over that portion of the pixel which contained any part of
the cross. This process is identical to sampling with a square aperture with area of one
pixel. The cross targets were then superimposed on the digitized image.

A 512 by 512 segment of the digital image was used. Twenty-four cross targets
were randomly selected and placed on the image as follows: RS
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+  Cross placement was done at arbitrary sub-pixel locations.

*+  Cross sizes with aspect ratios of 1 x 7, 1 x 10, and 1 x 13 were used. The aspect
ratio related the width of one leg of the cross to the total length of the cross, as for
example, 1 unit to 10 units.

%+ The widths ranged from 1 pixel to 1.5 pixels.
*  The crosses were arbitrarily rotated at various orientation angles.

Additionally, zero-mean Gaussian random noise was added to the crosses with a stan-
dard deviation similar to the standard deviation of the image background around each
cross. Two data sets were created; one where a standard deviation of 25% of the back-
ground noise was added to the crosses to simulate fiducial marks and one where no
noise was added to simulate reseau marks.

Both the moment location and Fourier descriptor location routines were used to
precisely locate the cross targets. All targets were detected with no false targets found.
The average miss distance, p, for all 24 targets in each image was calculated. The miss
distance p is given by

p = VAx? + Ay? (33)

where Ax is the error in the x position and Ay is the error in the y position. Thus, p
represents the undirected distance between the actual cross position and the algorithm's
determined cross position. As shown in Table 2, the moment location process exhibited
average miss errors of 0.255 pixels and 0.241 pixels for the no noise and 25% additive
noise cases, respectively. On the other hand, the Fourier descriptor method showed a
significantly lower error of 0.073 pixels and 0.107 pixels for the no noise and 25% addi-
tive noise cases.

Moment and Fourler Descriptor Method Error

Method Noise
0% 25%
Moment 0.255 pixels 0.241 pixels
Fourier Descriptor 0.073 pixels 0.107 pixels

Table 2.  Mean Location Error for Moment and Fourier Descriptor Methods.

These results were then passed to the least squares algorithm described in the next sec-
tion.




--------

-14 -~

2.2.5. Location using Least Squares
The least squares adjustment model for the fitting of a cross-type feature to image

data was incorporated. The procedure followed in this routine was to construct the

desired feature as a set of four rectangular components, which allowed for the con- -j.‘_-'_'ff

venient determination of partial derivatives by summing over all components. A total EZ:_‘.-T:j

of five parameters were estimated: h; the average background signal value, h, the aver- 1
¥4

target. The quantities W, the width, and L, the length, of the cross were assigned
approximate values based on the average scale of the imagery and the size of the tar-
gets in the data base. The least squares approach does allow for the solution of all
quantities, including those parameters defining the spread function. However, for these
tests, the goal was to demonstrate the ability to extract positional information; the ' r
problem of determining precise target dimensions was not a primary goal. S

age target signal value, x,y geometric center of the target, and @ the orientation of the s
4
;
{

The digital image files generated for the purpose of measuring the positions of :;52 ]
crosses made use of the simulation package SIM, previously developed at Purdue
University and described by Mikhail et. al. [10,11], with the following characteristics:

*  SIM makes use of an augmented digital data base containing both elevation infor-
mation and quantized density values from a digitized orthophotograph.

*  SIM uses a bilinear interpolation in elevation and in grey shade, but both can be
redefined easily.

*+  The data base used contained 1778 row by 1117 columns each, representing the
Fort Sill area of Oklahoma.

*+ [t is possible to superimpose artificial targets in the terrain mode] by assigning new
grey shade values to specific data base elements.

In this way, such targets are included in the image synthesis process, and appear as
other natural features in the resultant digital image file.

Y

In one experiment, a set of nine image files were generated. The exterior orienta-
tion was varied, by assigning combinations of three different values of the primary rota-
tion w and three different values of the tertiary rotation k. Thus x took on values 0°,
20°,and 45°, and w was 0°, 5°, and 15°. Within one file eight cross targets were
imaged. In all cases, the ratio between the average pixel spacing and the data base ele- 1.'31:.-
ment spacing was very roughly 1.0. Therefore the approximate dimensions of the
crosses in the resultant images were 5 pixel’s length by 1 pixel's width.
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Two types of spread functions were used, the rectangular and Gaussian. The 3
range in root mean square errors in X or y is from 0.033 to 0.086 pixels, with one case :
yielding the relatively high value of 0.394. In this particular instance, the initial
approximation for @ was 0°, when in fact the true value should have been close to & . j
(45°). This poor approximation appeared to have allowed convergence of the adjust- ]
ment to a local minimum, and resultant residual in the final estimate was on the order 3
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of 45° in orientation and 1.0 pixel in position. The approximation was calculated by a
very simple procedure employing template matching. The use of pattern recognition
and feature extraction algorithms for deriving approximations totally alleviates this
problem.

The least squares algorithm was next used on the Arizona test data with the initial
approximations supplied by the moment location method and then repeated with the
Fourier descriptors method. Using approximations from both processes, the rms loca-
tion errors were reduced in x to 0.05 pixels and in y to 0.03 pixels. Even when the
moment process resulted in a poorer location than the Fourier descriptor process, the
least squares routine still converged to virtually the same result. However, the Jeast
squares routine required at least one more iteration per data point when it started with
the moment process approximations.

Many features in aerial images are smaller than the imaging aperture used to digi-
tize the scene. Yet, these digitized features can still be located by observers. 'i'here-
fore, the intent of the next experiment was to determine if objects with subpixel
features could be accurately located.

A test image was constructed with twenty-five thin crosses superimposed on the
Arizona data base. In order to simulate thin features, the cross leg widths ranged from
0.5 to 1.0 pixels and the aspect ratios were 1x7, 1x10, and 1x13. The Fourier descrip-
tor algorithm was used to detect these crosses in the image. Of the original 25 crosses,
only 17 crosses were detected. Due to the thinner features, recognition was not esta-
blished by the local maximum routine or the Fourier descriptor routine for eight
crosses. However, no false detections were made. Increasing the number of detected
crosses by lowering the local maximum or Fourier descriptor thresholds will also
increase the number of false targets.

Of those crosses detected, the Fourier descriptor method resulted in root mean
square errors in X of 0.335 pixels and in Y of 0.317 pixels (Table 3). Using the Fourier
descriptor results as initial approximations, the least squares algorithm improved the

i location results to 0.048 and 0.036 root mean square error (pixels) in X and Y, respec-
tively, as shown in Table 3.

Location of Thin Crosses
Method X rms (pixels) | Y rms (pixels)
Fourier Descriptors 0.335 0.317
Least Squares 0.048 0.036

Table 3.  Location results on crosses with subpixel features.

...........................
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3. Effects of Image Processing on Geometric Fidelity

Provided that the Fourier descriptor-least squares algorithm exhibited minimal
location errors, digital image processing techniques were monitored for their effect on
geometric fidelity. The types of processing work that were studied included: image
compression, image enhancement, and image resampling using various interpolation
functions.

3.1. Effects of Digital Image Compression -- Cosine Compression

For each of the two Arizona test images, a two-dimensional adaptive cosine -
transform compression scheme was applied. The image was sub-divided into 16 by 16 i
sub-blocks and the coefficients resulting from the 2-D Direct Cosine Transform were ez

quantized using a bit assignment scheme based on the energy in each block [12]. The ’ -
quantization levels were determined from the desired compression. The resulting SR
images were then reconstructed using 8, 2, 1, and 0.5 bits/pixel. For each of the eight ';-'.-_',;
possible image files described above, two different processing procedures were used: RS

————ady
*  An algorithm based on Fourier descriptors and moments was used for detection Q-

and location, followed by the least squares algorithm for precise positioning.

*  An algorithm based only on the Fourier descriptors was used followed by the least
squares algorithm.

In general, as the number of bits decreased the location of the crosses changed
implying geometric shift. Furthermore, some of the crosses lost an entire leg due to the
sub-division performed by the compression. In this event, the algorithm did not recog-
nize these crosses and therefore the total number of crosses was reduced. Processing of
the original images showed that the location of a cross could be achieved with a preci-
sion of 0.03 - 0.05 pixels. Compression to 2 bits/pixel led to 0.06 - 0.13 pixels; 1
bit/pixel led to 0.16 - 0.18 pixels; and 0.5 bits/pixel led to 0.36 - 0.71 pixels. These
results are summarized in Table 4 for easy reference.

Preclsion after Cosine Compression

; Compression (bits/pixel) | Precision (pixels)
8 (no processing) 0.03- 0.05
i 2 0.06 - 0.13
1 0.16-0.18 2
0.5 0.36-0.71 NS
. ~3;'.~I'1
. YRS
) Table 4.  Precision results after cosine compression at various compression levels. T
~-
Lo
oy
R _1
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3.2. Effects of Mean and Median Filters in the Presence of Noise

In the previous section, the test data consisted of artificial cross data embedded on
real terrain data. The noise statistics of the terrain data due to the system and atmos-
pheric effects were unknown. To better isolate the effects of processing, new test data
was artificially generated with known noise statistics, The base image consisted of 49
crosses with the aspect ratio 1 x 7 oriented at random angles and placed at random
sub-pixel locations on a flat field. The width of the legs of each cross was set at 3 pix-
els, thereby making each cross 21 pixels in length. This larger size was necessary to
prevent the median filter from removing large portions of the crosses. Three additional
images were created by adding varying amounts of independent zero-mean Gaussian

! random noise to this base image. The standard deviation of the noise was set at 20%,
40%, and 60% of the center step height (grey value) of the cross.

On each of the above images, eight separate processes were performed. These
processes included a 3 by 3 mean filter, 3 3 by 3 median filter, a circular mean filter
with diameter of 3, and a circular median filter with a diameter of 3. The above

J processes were repeated using 5 by 5 window and diameters of 5 pixels. To the
authors’ knowledge, the circular median filter has yet to be introduced in the literature.
For this reason, a brief discussion of the circular median filter is given in Appendix F.

To the four test images, the Fourier descriptor precision method was applied. This
method was preferred over the moment method due to it's superior performance on the
Arizona test set. Due to the large cross size, the least squares algorithm was not
applied to the test data. Notably, for the zero noise case, the average error is 0.061
: pixels. In general, due to the off-pixel boundary placement of the crosses and the arbi-
. trary angle of each, the Fourier descriptor location result was not identically zero.

Median Results For the 20% and 40% noise cases, the median filters improved the
location result only slightly in comparison with the non-filtered result (Table 5).
Median filtering in the 60% case resulted in a marked reduction in the error by almost
. 40%. All the cases have shown virtually no difference in the location result between
. the square and circular median filters. Thus, the differences between the two types of
‘ median filters at size 3 on the geometric accuracy was minimal at most. For the size 5
case, filtering caused deterioration, as there was a slight increase in location error over
that of the non-filtered data. The window size was at times too large for the feature.
; As the noise level was increased, the resulting location error was increased. Only in the

highest noise case did the median filter increase the accuracy. Additionally, the circular S
median resulted in less error than the square median. This can be attributed to the :Z-.::I'_‘
additional bias the square median filter had on orientation. N
R

]
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Mean Location Error (pixels) for Synthetic Test Image
Before Median Mean

Noise . Square Circular Square Circular
Processing
3x3 5x5 | d=3 | d=5 3x3 5x5 d=3 | d=5
0% 0.061 0.078 | 0.091 | 0.078 | 0.081 | 0.026 | 0.043 | 0.026 | 0.033
20% 0.108 0.093 | 0.114 | 0.094 | 0.105 | 0.087 | 0.118 | 0.081 | 0.124
40% 0.207 0.188 | 0.255 | 0.184 | 0.239 | 0.184 | 0.258 | 0.185 | 0.250
80% 0.404 0.249 | 0.359 | 0.242 | 0.304 | 0.220 | 0.300 | 0.214 | 0.279

Table § Mean location error in pixels for synthetic test image using Fourier descriptor method.

Square and circular median and mean flter results are shown using window sizes of 3 and 5

pixels in the presence of various amounts of noise.

In general, given that the feature was much larger than the window size of the
filter, the median improved the accuracy of the Fourier descriptor location result on
noisy data. However, when the feature was not larger than the window size, the
median filter appeared to distort the feature and the accuracy of the Fourier descriptor
location result was reduced.

Mean Results For all cases, the location results of the Fourier descriptors were better
after using the mean filter than prior to this preprocessing (Table 5). Notably, for the
zero noise case, the location was improved greatly. This was not seen in the median
case where in only the noisier cases did the location result improve over that of the
unprocessed result. Additionally, all cases of the mean filter of size 3, the location
result was better than the result for the median of the same size. Also, there was no
discernible difference in location accuracy between the square and circular means.
Therefore, smoothing the data improved the accuracy of the Fourier descriptors and
should be considered as a preprocessing operation for the Fourier descriptor method.

3.3. Effects of Resampling Using Various Interpolation Functions

The effects caused by resampling on metric accuracy was studied. A linear resam-
pling scheme was used with no scaling of the coordinate axes. In a continuous domain,
all distance measures are preserved after this type of transformation. This transforma-
tion can be preformed by rotating and translating the original image. In practice, the
inverse transformation is performed on the new image position to determine the
corresponding old image position. The calculated old image position in general is not
located on a pixel boundary. Various interpolation functions have been proposed to
extract the correct grey level value from this non-integer position. Three common
interpolation functions were considered: biconstant (nearest neighbor), bilinear, and
bicubic. The biconstant function merely uses the closest pixel's grey value. The bil-
inear function interpolates from the four nearest pixels' grey values. The bicubic
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function incorporates the sixteen nearest pixels’ grey values.
p

The Arizona test data was resampled at various rotations, and horizontal and vert-
ical translations. The translation intervals were 0.125, 0.25, and 0.375 pixels and every
combination of these intervals in X and Y were performed to yield 9 different translated
images. The rotation intervals were 12.5°, 25°, and 37.5° and each rotation interval
was applied to the nine translated images. This yielded 27 different resampled images.
The transformed images contained 19 to 22 crosses depending on the amount of rota-
tion. Therefore, the number of crosses that were resampled was at least 513. This pro-
cess was performed for each interpolation function. The precision location algorithm
using Fourier descriptors was applied to each image. The mean error horizontally and
vertically was tabulated as well as the mean radial error or miss distance p for each
interpolation function. Table 6 summarizes the results.

| Locations Results (pixels) with various Interpolation Functions
Interpolation Mean 12.5° 25.0° 37.5° All
Biconstant x -0.0317 -0.0359 -0.0479 {-0.0383
y 0.0067 0.0014 0.0289 | 0.0121
P 0.1629 0.1795 0.1952 | 0.1787
## crosses 202 188 186 576
Bilinear X 0.0018 -0.0108 -0.0349 {-0.0141
y 0.0363 0.0457 0.0469 | 0.0427
P 0.1289 0.1461 0.1434 | 0.1392
# crosses 207 189 189 685
Bicubic X 0.0017 -0.0136 -0.0430 [-0.0177
y 0.0552 0.0762 0.0738 | 0.0680
P 0.1638 0.1823 0.1858 | 0.1769
# crosses 207 189 189 585

Table 6. Location results (pixels) after using the three interpolation functions: biconstant, bilinear,

and bicubic. There are nine different translations for every rotation angle given in the

table.

The mean errors in the horizontal and vertical directions for all interpolations were vir-
tually zero and therefore show no significant bias. The values appear to show the X
error to favor the negative side of the correct position and the Y error to favor the posi-
tive side of the correct position. However, since the Fourier descriptor method does not
give perfect location results in noiseless data, it is felt that this small bias could stem
from the location method rather than factors associated with the interpolation func-
tions.
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For all cases (X,Y,p), as the rotation angle was increased the location error

: increased. Since the digitization and interpolation schemes are based on a square grid
‘ structure, it can be inferred that the location error increases as the rotation approaches
3 45° and then decreases as the angle approaches 90 °. This observation suggests that if
3 the interpolation functions were implemented using a circularly symmetric window,

location error would not be influenced by the rotation angle.

. Lastly, the radial mean errors for biconstant and bicubic interpolations were very
nearly the same at all rotations. In addition, the radial mean accuracy was significantly
better using the bilinear interpolation function and was consistently better at all orien-
{ tations. Since bicubic interpolation uses more information than bilinear interpolation
h (18 grey levels as compared to 4 grey levels), it was assumed that bicubic interpolation

would produce less metric distortion. This now appears not to be the case. From these
results, position information can best be obtained only from the four nearest pixel loca-
tions. Thus, bilinear interpolation produces less metric distortion than either bicon-
) stant or bicubic interpolation. However, more work is needed to understand the factors
i underlying this result.
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PHOTOGRAMMETRIC ANALYSIS OF DIGITAL IMAGES

J. D. Thurgood and E. M. Mikhail

Purdue University, West Lafayette, Indiana 47907, U.S.A.

ABSTRACT

Recent experiments wusing hardcopy measurement of digital e
images have shown that accuracies significantly less than ‘;'““
the pixel size are attainable when pointing to well-defined ,
features such as dots, <c¢rosses and edges. In addition,

digital ©processing techniques for the automatic extraction
of feature location to subpixel levels have been applied ¢to
simulated aerial images with significant results. This
paper describes approaches to the photogrammetric analysis
of digital images which investigate the role of the human
observer and digital processing in the extraction of precise
geometric information.

1. INTRODUCTION

The growth in the use of digital images has been accompanied
by the development of digital processing techniques in many
areas: from image enhancement and image coding, to pattern
recognition and image classification procedures. From the
photogrammetrist's point of view, the primary concern must Tl
be the geometric fidelity of the image, that is, the utility ir‘_
of the stored data for the extraction of geometric T
information. This information takes the form of image Wt
coordinates, measured lengths and areas, or corresponding
quantities in a three—-dimensional space formed using
overlapping imageries with different perspectives. However,
the bulk of recent work in digital image processing has
dealt with gray shade(density or intensity) values, but not
particularly with the effect of changes in gray shade R
distribution on the ability to extract precise metric Sl
information. As digital images become increasingly RS
available in the form of either directly-acquired records or R
as digitized photographs, it is important that measurement ’
processes be developed commensurate with the full potential
of the image data.

Makarovic and Tempfli (4) considered the photogrammetric
problem in terms of both pictorial and metric requirements,
using the sampling theorem as a basis for the former, and
using the sampling interval as a basis for the latter.

When considering specific image features such as edges and
lines, there do exist well—-known digital processing
techniques for their detection and location to pixel levels
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(7). Other research (1,2) has developed theoretical bounds
on the variance of positional estimates using digital
images, without actually implementing the necessary
algorithms to solve the estimation problem. The method
devised by Hueckel (3) has been until recently the only
means of obtaining edge and line location estimates to
subpixel levels, without applying interpolation.

Recent work by Unruh and Mikhail (10) involved the
measurement of digital images written on film with pixel
sizes of 25, 50, and 100 um. The digital image files were
synthesized aerial images, produced using the program SIM.
This program makes use of a digital terrain model containing
gray shade information to generate images exhibiting all the
perspective characteristics of an aerial image, but in a
digital form (8). SIM allowed the introduction of
artificial image targets, either by modification of the gray
shades in the terrain model, or by superimposing targets in
the image itself. Results from these and similar
experiments carried out with digitized aerial photographs,
indicated that hardcopy digital images could provide
measurement precisions of 7 um or better for monoscopic
viewing and roughly 10 um for stereoscopic viewing of
targets appearing in both images, even with pixel sizes of
up to S50 um.

LR AL

This paper will first review a new method of locating an
edge to subpixel levels using moment preserving, developed
at Purdue University by Tabatabai and Mitchell. Secondly,
an approach to the image modelling problem which uses the
method of least squares adjustment to estimate feature
position is described. Then summaries of two experiments
being conducted at Purdue University into the geometric
analysis of digital images will be given: one involving the
hardcopy measurement of images containing edges, and another
implementing the least squares algorithm to automatically
locate cross targets in simulated aerial imageries.

2. EDGE LOCATION USING MOMENT PRESERVING

The method of edge location by moment preserving is
described in more detail in (8).

For simplicity, let wus first consider the one—-dimensional
case, in which an attempt is being made to model a set of
data to an ideal step edge as shown in Figure 1. The three

parameters defining the edge are: h; the signal value below
the edge, h,; the signal value above the edge, and X the
location of the edge. Moment preserving is used as the
criterion of best fit of a set § of n data points to the
ideal edge f{s). Rather than solve directly for X, the edge
location is defined as k+%, where k is the (unknown) number
of samples below the edge. Since there are three unknowns,
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we set the first three sample moments equal to those
associated with the ideal edge, that is:

k J n—k J

ﬁ’ = - h‘ + hz for j = 1.2,3 ........ e e s 0 s e s (1)
n n ' .
where D
1 n J
ﬁj—_ 2!;. « o . . .. s P .. ¢ o s 0 o ---(2)
n i=1

is the j-th sample moment, and j is a power.
The three equations given by (1) may be solved directly in a

closed form. In particular, the solution for k is given by (o
ko= (n/2){1-e/VATeT} ooivnnnnn.. e (3) .
where . ;f‘i
¢ = {8, H,~Fe-2(F;)%}/0® :

is the skewness of the data, and o2=i,-f,2.

From equation (3) it is clear that k need not be an integer,
and therefore sub-pixel edge location is obtained directly.
This method of edge location assumes that the data consists
of monotonically increasing values. This will not be the
case if noise is present, and preprocessing of the data to
smooth out oscillations due to noise has been shown to
improve results by a significant amount. Extension of ¢the
model to two dimensions necessitates, in addition to moment
preserving, calculations to determine the center of gravity
of the image data, in order to solve for the two parameters
which now define a straight edge passing through the image.

Moment preserving is very simple to apply, and yields
unbiased estimates if the edge lies near the center of the
area considered. Biased results may be overcome by

recentering the area to be modelled after an initial
solution.

3. LEAST SQUARES ADJUSTMENT IN IMAGE MODELLING

Let f(s,t) represent the output of a perfect imaging system,
that is, the 1ideal picture function. Consider next a
linear, spatially-invariant imaging system with a normalized
point—-spread function p(s,t) assumed known. Then let ¥(s,t)
denote a random variable representing the measurement at
sampling position (s,t). We may model the measured quantity
using the convolution

T(s,t) = ff £(&,7) p(s—£,t—n) dgdn ............. Y )
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Consider now a set of u parameters x which completely
characterizes f(s,t) over the region of interest. Equation
(4) may be rewritten as

T(s,t) — r(s,t:x) x p(s,t) =0 .....................(B)

where % denotes the convolution operation.

Then for the ij~th picture element which is a sample of
¥(s,t) at s=s;, t=t;, we may write a linearized condition
equation of the form (dropping s,t for simplicity)

where !q° is the initial estimate for the observation,
vy is the measurement residual,
Fiy(x) = = fy5(%) * py.
By is the set of partial derivatives of Fy(x) with
respect to the parameters, evaluated at §=§°.
§° is the set of initial parameter approximations, and
A is the set of corrections to the parameter
approximations.
Equation (8) represents a single condition equation for the
model known as Adjustment by Indirect Observations. The
total set of equations can then be solved by forming the
normal equations in the conventional manner (S5).
Tests using both edge—locating algorithms were carried out
on sets of simulated one-dimensional signals containing

random noise at various levels by these authors (9). 1In
general, the precision of the edge estimates decreased as
the noise level increased. At a noise-to-signal level of

10%, both algorithms achieved root mean square errors in X
of less than 0.40 sampling intervals, in data with a spread
of four sampling intervals across the edge.

4. HARDCOPY MEASUREMENT OF IMAGES CONTAINING EDGES
4.1. Data generation

In order to allow the fullest control over the geometric and
densitometric nature of the images to be measured, simulated
data was generated which represented a set of fifteen
digital image files. Each file consisted of a two-
dimensional array of size 1024 by 1024 pixels, containing a
gray shade distribution modelling a main image area and a
set of four <cross fiducial or reference marks. The
functions defining the edges were selected in order to allow
the effects of various edge characteristics to be studied:
Width (0,2,4 pixels), Type (step,ramp,exponential,raised
cosine), Contrast (high,low), Noise (0,20%,40%), and
Orientation (0,20°,45°),
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The fifteen files were written on film as a single image,
shown in Figure 2, using an Optronics precision film-writer
located at DMA/AC St.Louis with a 25um square aperture. We
shall refer to each image file as an individual frame. The
data was written so that the gray shade values corresponded
to a roughly linear scale in density in the final film
positive.

4.2. Measurement of the hardcopy image

Measurements to the reference marks and to the edges were
performed by three observers. A total of three replications

were made of the whole experiment. The measurement
instrument used was the Zeiss PSK Stereo Comparator,
operated in the single-plate binocular viewing mode. Within

one frame a total of ten pointings were made: one to each of
the reference marks and three each to two distinct locations
on the edge itself. The total set of data acquired was
comprised of 1350 pairs of coordinates.

4.3. Preliminary processing and analysis of measurements

The preliminary analysis of all data gathered included the
estimation of precision associated with the ability of each
observer to measure the fiducial marks and the
transformation of the comparator measurements into an image
reference coordinate systemn.

Using repeat measurements, an estimate of the repeatibility
of each observer in pointing to the fiducial marks was
determined, over eighty measurements, as 1.1 um, 3.2 um and
2.3 um for observers 1,2 and 3 respectively. These
expressed the 68% confidence limit of a measurement in x or
in y.

The measured fiducials were fitted to the control points for
each frame individually, in order to localize any systematic
deformation in the film. Statistical tests involving the
relative rit of the two-dimensional conformal (four-—
parameter) and the affine (six—parameter) transformations to
the control points, indicated that in general the four-
parameter transformation modelled the measured points
adequately. A lack of fit detected in certain frames was
attributed to residual film deformations of the order of 3-4
Mm in magnitude. It was decided that insufficient
information existed to attempt to further model these
residuals.

4.4. Analysis of edge measurements

A detailed statistical analysis was performed on the errors

in measurement to the edge wihin each frame. In order to
provide a common reference, the error in a single
- 580 -




measurement was calculated as the normal distance from the
measured point to an idealized edge location which was
defined using the mean value of gray shade beyween the light
and dark sides of the frame. These error values were
negative if they lay to the lighter side of the ideal edge,
and positive if they lay to the darker side.

An analysis of variance (ANOVA) carried out with the factors
Repiicate, Observer, Frame, and Location, indicated that all
four significantly affected the accuracy of the edge
measurements. In addition, many of the second— and higher-
order interaction terms appeared as significant. This meant
in effect that the variability in measurements within a
single group of three pointings to the same location was
very small when compared with all other groups of
measurements, The variability between replicates and
between locations is due in part to the fact that the
observer was not consistent 1in his edge—-pointing process
over time, and in part to the irrecoverable errors
introduced by film deformations. Then for a practical
situation, where a given edge location is measured only
once, we may obtain a better idea of the variability in edge
measurement by pooling the variability associated with
Replicate and Location. The mean errors in measurement to
the edge within each frame are shown in Figure 3. These
means were calculated over all 18 measurements to the same
edge by individual observers. Also shown are the 68%
confidence levels associated with a single measurement.

As can be seen, not only was the difference in measured edge
position large between observers, but there was also a
consistent trend: observer 1 measured to the lighter side of
observer 3, who measured to the lighter side of observer 2.
This was an indication of how the judgement of an individual
in locating the edge played an important role, independently
of the characteristics of the edge.

Considering specific frames, it is obvious that the accuracy
in pointing varied considerably. It was possible to perform
comparisons between certain frames and groups of frames, in
order to examine the effects of a number of edge
characteristics. For example, it was found that the mean
position in pointing to edges with a spread width of two
pixels (frames 2,3,8) was roughly 0.3 pixels (7.5 um)
different from the mean position in pointing to edges with
four pixels’' width (frames 4,5,7). Significant differences
in precision were noted when comparing frames 1 (high
contrast step edge) and 10 (low contrast step edge). In
this case, the mean measured position remained almost
identical, but the standard deviation of a single
measurement rose from an average of 0.12 pixels (3.0 um), to
0.38 pixels (8.8 um) for frame 10. However, in the case of
added random noise (frames 13,14,15), both precision and




g accuracy were affected. Edge orientation and edge type
' (ramps versus others such as exponential and raised cosine)
were also found to be significant for at least one of the
three observers. Overall, the precision in edge
measurements ranged from 0.08 pixels (2.0 um) for observer
1, frame 2, to 0.47 pixels (11.8 um) for observer 2, frame
10.

Analysis ©of these results is continuing, but it is obvious
from these preliminary findings that both accuracy and
precision in measurement may be affected by various edge
characteristics.

S. MEASUREMENT OF CROSS TARGETS IN SIMULATED AERIAL IMAGERY

The digital image files generated for the purpose of

measuring the positions of crosses made wuse of the
simulation package SIM previously mentioned, and a
subroutine implementing the least squares modelling

algorithm.
5.1. Implementation of the cross pointing algorithm

The least squares adjustment model for the fitting of a
cross—type feature to image data was incorporated 1in a
FORTRAN subroutine named POINT4. The procedure followed in
this routine was to construct the desired feature as a set
of (up to four) rectangular components, which allowed for
the convenient determination of partial derivatives by
summing over all components. A total of five parameters
were estimates in POINT4 (see Figure 4):

h, the average background signal value,

- h, the average target signal value,

- X,Y defining the geometric center of the target, and

e the orientation of the target with respect to the
rows and columns of the image.

POINT4 allowed the use of a rectangular or Gaussian spread
function. For the functional model to be correct, it was
required that the function be <c¢ircularly-symmetric and
separable into two equivalent one—-dimensional functions.
However, if the spread function were not circularly-
symmetric, the errors introduced would not be expected to be
significant for the case of a symmetric target such as the
cross. For these tests, the width of the spread function
was assigned so that at least 80% of the spread lay within
half a sampling interval of the pixel center.
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Quantities W, the width, and L, the length, of the cross,
were assigned approximate values based on the average scale
of the imagery and the size of the targets in the data base.
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The least squares approach does allow for the solution of
all quantities, including those parameters defining the
spread function. However, for these preliminary tests, the
goal was to demonstrate the ability to extract positional
information. The problem of determining precise target
dimensions was not the primary one in this context.

5.2. Tests with synthetic vertical frame images

For these tests, four image files were generated using SIM,
corresponding to two vertical stereo pairs, A and B, with
80X overlap. Each file contained sixteen segments of fifty
rows by fifty columns, positioned so that the image of a
cross target lay near their center. The cross targets were
formed by modifying the data base elements as shown in
Figure 5(a). The two stereopairs differed basically only in
scale, so that on pair A the crosses were imaged with size
roughly six pixels across, and on pair B the crosses
appeared three pixels across. These files were identical to
those used in the hardcopy analyses of Unruh and Mikhail.

Parameter approximations for each target were obtained
through the wuse of a simple matching template and a cross
correlation procedure. The template used represented a
cross of length five pixels as shown in Figure 6. Then,
considering the image data to be denoted by a function g,
and the template function (taking values either zero or one)
to be t, the cross correlation function C,; was calculated
at each template position (m,n), using

+2 +2

Ceg= = Z tij Biem jen
i=—2 j=-2

The template position yielding a maximum value of Cyg was
used as the initial approximation for the position of the
cross. This then defined an eight row by eight column
neighborhood of image data which was involved in the
adjustment proper.

Approximations for the background and target signal values
were calculated by examining the average gray shade 1) at
the corners, and 2) in the center, of this array.

The quantity 6 was carried as an unknown in the adjustment,
but the corresponding approximation 6° was always assigned
the value zero. In the event that target dimensions were
also to be determined, similar methods involving the use of
cross—correlation functions could be implemented to
calculate initial parameter approximations. In these tests,
values W=2,L=6 were used for pair A, and W=1,L=3 for pair B.
For each target the adjusted position within the eight by
eight pixel area was referenced back to the overall image
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coordinate system. The true error was then estimated as the
computed position minus the ideal position. Root mean
square errors were formed over the sixteen targets. In
addition, the root mean square error of the orientation
estimates was determined. These results are shown in Table
1, along with the corresponding measures of accuracy from
the hardcopy measurement of the same targets (on image files
A-2 and B-2).

The estimated standard deviation in estimates X or Y range
from .029 to .085 pixel. Using these values as a measure of
performance, the adjustment model with a rectangular spread
function did slightly better than the model with a Gaussian
spread function.

Estimates of position containing errors larger than 3%RMSE
were found to be associated with target 11 in image A-1,
target 2 in image A-2 and target 10 in image B-1. It is
thought that these relatively large errors (of magnitude up
to .200 pixel) may have been caused by noise in the
background image being confounded with the cross image.
With these points removed from the calculation of the
summary statistics, the RMSE's varied from .020 to .033 for
the rectangular spread model, and from .026 to .082 for the
Gaussian spread model.

In all four image files, the accuracies obtained were
substantially higher than for the corresponding hardcopy
human measurements using film pixel sizes of 25 and 50 um.

All adjustments but one converged satisfactorily, generally

within four iterations. In one case, the adjusted parameter
values oscil lated back and forth with successive
relinearizations, causing large changes in the reference
variance and the orientation estimate, but changes in
estimated target position of less than .010 pixel. This
instability is stil being investigated, and is thought to be
associated with the near—~singularity of the normal

coefficient matrix N.

5.3. Tests with synthetic images of variable ¢tilt and
orientation

Next, a set of nine image files were generated, with an
effective camera station equal to that for image B-~1 as used
previously. In this experiment however, the exterior

orientation was varied, by assigning combinations of three
different values of the primary rotation omega (w) and of
the tertiary rotation kappa (kx): kappa took on values 0, 20°
and 45°, and omega 0, 5° and 15°. Within one file, sixteen
targets were imaged. 1In all cases the ratio (average pixel
spacing)/(data base element spacing) was very roughly 1.0.
The two distinct target types were as follows: targets 1 to




8 were 3 pixels across (type 1), and targets 9 to 18 were S
pixels across (type 2), formed as shown in Figures $ a) and
b) respectively. Initial parameter approximations were made
in a similar way to before, but for 6°2 using a set of six
templates for matching, each one corresponding to feature
rotations roughly 15°-20° apart. Image target dimensions
were assigned as W=1 for all cases, and L=3 for type 1, L=5C
for type 2 targets.

The adjustment results are shown in Table 2.

As previously, the model with the Gaussian spread did not
perform quite as well as the model with a rectangular
spread. The most significant variations in algorithm
performance appear to be a function of the exterior
orientation and of the target type.

Firstly, the accuracy of the target position estimates was
highest for the case where omega equals zero. This was ¢to
be expected, since only the image rotation rather than image
displacement due to tilt, could be modelled within the
adjustment. Then the quantity 6 corresponded to an estimate
of kappa, whereas no estimate could be made for additional
tilts. In general, the accuracy in pointing to the 3 by 3
pixel crosses decreased as kappa increased from =zero: the
RMSE in R or Y increased from .021 pixel for k=0, w=0, to
.158 pixel for k=45°, w=5°. This increase was accompanied
by an increase in the errors in orientation estimates.

Secondly, in pointing to target type 2, the RMSE values

actually decreased as kappa increased from zero, and the
accuracy of the orientation estimates remains roughly
constant. This is still being examined.

Both types of adjustment, that is, pointing to both types of
target, appeared to be adversely affected when poor
approximations were made for target orientation. Since the
larger target allowed a more accurate determination of the
approximation 6%, in most cases the final estimate for 6 was

close to the kappa value. The exception was for the case
where k=45° and w=15°, where the final estimate for the
rotation of target 11 was close to zero. The resultant
error in position was on the order of one pixel. All values

in parentheses in Table 2 are the corresponding statistics
for the case where the known kappa values where used as

approximations for 6. As can be seen, the accuracy in
peinting to target type 1 is increased substantially for the
images with large kappa values. For target type 2, no

improvement was made over the original adjustment cases,
with the exception of the case described earlier.
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8. CONCLUSIONS

The results described above indicate that both human and
algorithmic operators are capable of extracting high-
precision geometric information from digital images,
provided that the targets to be measured are sufficiently
well—-defined.

In measurements of hardcopy digital image files containing
edges, the precision in pointing to these straight edges was
found to vary from 2.0 um to 11.8 um (B68% confidence
interval). Variation in precision was associated with
observer and with edge characteristics such as contrast,
additive image noise and the width of the edge-spread.
Accuracy was more difficult to interpret, since the problem
associated with determining exactly what the human measures

is still wunsolved. However, consistent biases in pointing
across the profile of the edge were associated with each
observer, The analysis of how these biases relate to an

'ideal' edge location are continuing.

The analytical approach was found to work well in the case
of cross—pointing in simulated aerial imagery. Crosses of
size three pixels across were located with accuracies of
.03-.068 pixel in vertical imagery. In imagery with a
variety of orientations, the approximation for the <c¢cross
orientation was critical in guaranteeing the highest
accuracies. Thus for the three pixel crcsses, the
accuracies ranged from .02 pixel for vertical image files to
.18 pixel for files containing crosses with a 45°
orientation. A second type of cross, of size five pixels
across, was large enough to allow a reliable approximation
to be determined for the orientation, thus allowing an
accuracy in the range .03-.08 pixel to be maintained, 1in
general, even with up to 18° of tilt present.

Factors such as the size of the target and the background
contrast play important roles in both types of operator.
Further effort is required in both areas, that is, to gain a
better understanding of how the human observer performs the
pointing process, and to use all information possible to
train an automatic digital operator to perform the same
tasks to the highest degrees of precision and accuracy.
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Table 1 Cross pointing on vertical imagery.

o

RECT. SPREAD MODEL GAUS. SPREAD MODEL

Pl ST S

-~ A ~ ~ ~ N !{AR'WAOP! .-

IMAGE RMSE (XorY) RMSE (0) RMSE (XorY) RMSE(0) LARGE RMSE(XorY) o

FILE (pixels) (degrees) {pixels) (degrees) ERROR (pixels) 3
A-1 .030(.020) 1.54(0.39) .033(.028) 0.46(0.33) #11 - :k :
A-2 .063(.023) 2.76(0.75) .065(.026) 2.67(0.63) # 2 .292 IR
L

B-1 .029(.021) 1.21(1.21) .051(.043) 1.31(1.33) #10 - '
B-2 .033 1.46 .052 1.86 - .290

Figures in parentheses represent values calculated after removing points

containing large errors (positional error of more than 3*RMSE).

Table 2 Cross pointing on imagery with various orientations.
RECT. SPREAD MODEL GAUS. SPREAD MODEL Fr
IMAGE  RMSE(Xor¥) RMSE (8) RMSE (Ror¥) RMSE (§) (.
K w (pixels) (degrees) (pixels) (degrees) e
Type 1 target
0° .021 1.67 .041 1.33
0 5 .032 2.74 .046 3.02
15°  .053 3.27 .068 2.94
o 0o .081(.048) 8.61(4.23) .063(.052) 4.19(2.28)
20 5O .070(.079) 7.82(8.56) .084(.095) 7.45(3.53)
15 .085(.085) 8.99(8.74) .102(.113) 10.72(8.66)
o 0o .090(.026) 22.19(2.15) .097(.028) 22.58(4.19)
45 5o .158(.049) 43.72(1.87) .171(.050) 43.80(1.33) e
15° .086(.090)  32.55(5.11)  .134(.112)  35.83(4.16)
Type 2 target ;f
0, .030 1.50 .052 1.05 L
0 5 .108 1.19 .114 1.79 e
15°  .105 3.24 .132 2.80 -
o O° .021(.022) 0.79(0.57) .026(.026) 0.71(0.71) ;
20 50 .048(.049) 1.65(1.65) .048(.049) 1.47(1.48)
15 .049(.051) 4.57(4.57) .059(.059) 4.64(4.91)
o 0o .028(.028) 1.15(1.13) .029(.029) 1.24(1.24) .:
45 5o .028(.028) 1.67(1.59) .021(.021) 1.55(1.55) PR
15 .277(.031) 14.69(2.59) .267(.019) 14.97(2.84)

Figures in parentheses represent values obtained when assigning correct

approximations for 6.
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Edge Location to Subpixel Values in
Digital Imagery

ALI J. TABATABAI anp O. ROBERT MITCHELL, SENIOR MEMBER, IEEE

Abstract— A new method for locating edges in digital data to subpixel
values and which is invariant to additive and multiplicative changes in
the data is presented. For one-dimensional edge pattemns an ideal edge
is fit to the data by matching moments. It is shown that the edge loca-
tion is related to the so-called “Christoffel numbers.” Also presented is
the study of the effect of additive noise on edge location. The method
is extended to include two-dimensional edge pattems where a line equa-
tion is derived to locate an edge. This in turn is compared with the stan-
dard Hueckel edge operator. Am application of the new edge operator
as an edge detector is also provided and is compared with Sobel and
Hueckel edge detectors in presence and absence of noise.

Index Terms-Edge detection, edge location, Hueckel operator, mo-
ments.

I. INTRODUCTION

ECENTLY there has been a growing trend toward collect-
ing and processing terrain images in digital form. While
there has been considerable work done on general digital image
processing in such areas as image coding, image restoration,
and feature extraction, there has been little or no attention paid
to the effects of such processing on the geometric fidelity of
the image. The problem is motivated by the need for accurate
measurements from remotely sensed imagery, which is of
prime importance to the mapping communities [1], [2]. Many
of these images are in digital form. Thus, photogrammetric
analysis which deals mostly with metric aspects of images
must be combined with digital image processing and feature
extraction procedures, such as edge detection and location
techniques.

In this paper, an attempt has been made to give an objective
analytical definition to the term “edge location,” when a
blurred and noisy observation of an ideal edge in a digitized
picture is given. It shall be assumed throughout this work that
the desired image has been sampled and quantized to obtain an
acceptable discrete representation of the continuous image.

There appears to be a lack of a quantitative and universally

accepted definition for the term *“edge location.” The most

applicable publications which have dealt with the above prob-
lem are those by Hueckel [3]~[S]. Hueckel assuimes two-
dimensional data are available and fits a parametric function
to the empirically obtained edge disk so that the Euclidean

Manuscript received January 25, 1982; revised May 31, 1983. This
work was supported by the U.S. Army Research Office.

A. J. Tabatabai was with the School of Electrical Engineering, Purdue
University, West Lafayette, IN 49707. He is now with Bell Labora-
tories, Holmdel, NJ 07733,

O. R. Mitchell is with the School of Electrical Engineering, Purdue
University, West Lafayette. IN 47907.

distance is minimized. The parameters obtained can be used to
estimate the edge location to subpixel accuracy. No analytical
study of the performance of this operator, in the presence of
noise has been presented.

Frei and Chen [6] have developed an algorithm where an
“ideal edge element” is defined as a straight boundary line
passing through the center of a 3 X 3 window, thus separating
two regions of different, constant intensities &;, A,. They
have characterized the “ideal edge element” by its magnitude,
{hy-hy| and orientation. However, for the purpose of “‘edge
location,” the “‘ideal edge element” can also be easily charac-
terized by the equation of the boundary line. One obvious
disadvantage of this approach is the constraint imposed on the

_line by forcing it to pass through the center of the window.

Another possible disadvantage of the algorithm is its sensi-
tivity to noise.

The Frei and Chen algorithm is a generalization of the so
called “gradient™ edge detection technique, where different
edge detection methods correspond to different numerical
approximations to the gradient.

Roberts [7] defines the gradient G, at point (i, j) as

G=If(,)-fGE+1, j+ DI+ IfG+1, j)-fGj+ )

n
or equivalently,
G=|(F, W)l + [(F, Wyl @
where
p=[ G0y S+ 1) ]
A+ L) i+l j+1)

[o ]
W‘ =
0 -1
w‘ _[0 'l]
Lo
and
(A, B) £ inner product of matrices 4 and B
N N
(A,B)= z Z aL,b"’.
=1 j=1

Sobel [8] uses (1) to approximate the gradient G; but in-
stead of a 2 X 2 intensity matrix F, a 3 X 3 intensity matrix is
used, and in his case the weighting matrices Iv,, W, are de-
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fined as ¢+ 10 10 10 5 20 30 40 40 40,
12 10 -1 @®
) = - - "2 * 38..¢
Wy=] 0 0 Of Wy=)2 0 -2 3) 40 ‘ . "
-1 -2 -1 1 0 -1 30 x
One should note that the “‘gradient” method cannot be used 20 b » 123 x x
if subpixel accuracy of edge location is desired, unless some 'OE x x x
kind of interpolation process is performed on the data matrix. ke e 6968 i oy ]
Machuca and Gilbert [9] have given a theoretical argument, b)

based upon noise models that “gradient” methods should not
be used. Instead they have proposed a new algorithm where
the edge detection is not based on derivatives but uses integrals
to reduce the effect of noise. Their approach uses moments
to detect edges {10]. They have also shown that preprocessing
of data can appreciably improve the performance of their
operator.

Burnett and Huang [11] have proposed a simple statistical
description of signals with step edges. Such signals are graph-
ically represented by a path through a trellis. Blurred versions
of these signals are similarly represented. Then a cost or
length is assigned to each branch of the trellis and a MAP

-sequence estimate of the signal is computed by finding the

minimum cost or length path through the trellis. The Viterbi
algorithm is introduced as an efficient means to find the
minimum cost or length path through the trellis. The es-
timates produced by this algorithm are then used for edge
location measurement with “pixel’ accuracy.

Finally, Jacobus and Chien {12] have presented two edge de-
tection techniques which are based on the application of ar-
rays of edge detectors, each sensitive to a different group of
edge types. These techniques are claimed to be able to mea-
sure an edge with subpixel accuracy.

A good review of some of the techniques mentioned above is
presented in [13]-[16].

Summary of Problems Considered

As a first step in studying the metric properties of digital
pictures a new one-dimensional analytical formulation of edge
location is presented in Section II. The approach is based on
fitting an ideal edge to a set of empirically obtained one-di-
mensional edge data, such that the first three sample moments
are preserved. It will be shown that the parameters of the
ideal edge are related to the Gauss-Jacobi mechanical quad-
rature problem, where the edge Jocation is related to the so-
called ““Christoffel numbers,” and intensity levels are the zeros
of the orthogonal polynomial associated with input probability
density function. Also the effect of additive uncorrelated,
Gaussian noise on edge location is studied. Finally, the ef.
fects of averaging and median filtering the input edge data are
studied, and the reduction of noise effects due to preprocess-
ing is empirically verified. Section Il describes the extension
of the edge location method to two-dimensional edge data
where the problem becomes more complicated by the fact
that at least two parameters should be specified to describe
edge location. The new operator is compared with the stun-
dard Huzcke! operator. Also included is an application of the
new operator as an edge detector and a companson with
Huecke! and Sobel edge detectors.

...........
‘. ........ !‘-\
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Fig. 1. Empirical edge pattern as input to the operator, and the ideal
edge as its output. (a) Input empirical data. (b) Sample data and
ideal edge that matches first three sample moments.

II. A NEw ONE-DIMENSIONAL EDGE OPERATOR

Recent trends in mapping communities toward digitization
of analog pictures have motivated the need for accurate mea-
surements from digital images. In an ideal case, reflected light
intensities from an object and its background will be piece-
wise constant with discontinuities at the edges. Hence edges
and their location play a central role on the study of metric
fidelity of digital images. When the edge data is digitized, it
may be possible to determine the edge location to subpixel
accuracy by examining the transfer function of the digitizing
equipment and the output pixel values.

As was described earlier, there are a number of techniques
available that can be used, if pixel accuracy of measurement
is desired (see [6]-[11]). But for a more accurate measure-
ment, Hueckel [3]-[5] has provided the only alternative.
However, the Hueckel operator requires two-dimensional
data.

In this section, an analytical definition of edge location fs
given. It is shown that the method is easy to derive in closed
form. This in turn significantly reduces computational load.
This method is quite insensitive to the sequence length. The
method is invariant to multiplicative and additive changes in
the data. This is important because many optical, photo-
graphic, and digital image processing operations can scale and
shift the data. Throughout this section it is implicitly assumed
that empirical edge data is the output of a sampled scan line
across an edge pattern and consists of a discrete, one-dimen-
sional sequence of numbers.

A sampled scan line across a step edge in the absence of
noise is characterized by a set of numbers x;’s,i=1,2,-- -, n,
that are either monotonically nondecreasing or nonincreasing.
On the other hand, an ideal edge is a sequence of one bright-
ness value h,, followed by a sequence of another brightness
value h;. Here we define an operator that, when applied
to empirically obtained edge data [shown in Fig. 1(a)], gen-
erates an ideal edge [shown in Fig. 1(b)], such that the first
three sample moments of the imput data sequence which are
defined as

i=1,2,3 *

are preserved. If we let k denote the number of h; values in
the ideal edge, then preserving the first three sample moments
between the input and output sequences is equivalent to solv.
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in2 the three equations

-

\_ Z ;:; =y (5)
j=3
where
k
P1= =
n
and

for three unknowns p,, h,,and h,.
The solutions to these equations are presented in [17) and
are given by

. _ /P23
hy=m, - 0y/— 6
1=, oy (6)
hy =, + 6y /22 1(7)

P2

1 _ 1
p2‘5[1+s 4"’5-2] ®
where
my + 213 - 3ii, mo

= 3 ‘;3 ) (9)
6% = m, - mj. (10)

From the above results we see that k = np; may be a non-
integer [see Fig. 1(b)]; hence, if we define the edge location
0¢710 as

y=k . an

where the first pixel is located at j = i- and subsequent pixels
have spacing of one, then we are able to obtain a subpixel mea-
surement of edge location (e.g., edge location need not be at a
sample point).

In general subpixel accuracy of measurements is not possible
without first introducing some sort of interpolation process.
This, however, is not necessary if the method mentioned above
is used. Furthermore the computation involved in this process
is much less than the classical two-dimensional operator of
Huecke! [3]-{5].

Table 1 shows the applicability of this technique to different
edge patterns. Rows (b) and (c) in .able I provide an example
which shows the insensitivity of this method to input sequence
length.

Tt is easily shown that the quantity § defined in (9) is equal
to sample skewness (see [21]) of the input data sequence.
Thus, '

n
e LA (12)

Thereiore. one can conclude that the edge location is a func:
tion o7 skewness oniv. a :+.tu) result that will have several
applications. :

TABLE |
Evce Location ror Dirverest Ineut Epce PATTERNS. Tue Fimst
Novser s Eacw Segresce Rerresents THE Vatur at Location .
StantQu st Nevinens Have 4 Sracing or Ove,

Calevlated

lnput sequence {x;} Edge Location
(a) 0008511111 3508
(b) 000.2531111) 3 800
{fe) 00025113 11111111)121) 3.061
d) 012346811 ..

Furthermore, the edge location given in (11) is invariant
under scaling and translation (i.e., multiplicative and additive
changes in sample values). Thus if

i=1,2,-".n (13)

where @ and b are any constants, the sample skewness of the
2, sequence isidentical to that of the x; sequence, and the meas-
sured edge location (11) will be identical for both. This can be
significant because many photographic and digital processing
stages may scale the data in this manner.

Z;=ax;+b

111. EXTENSION TO MULTIPLE EDGE DATA

In the previous section the fitting of an ideal edge to a se-
quence of empirical edge data was discussed. In this section
we will show the extension of the technique to multiple edge
patterns.

Assume the sequence x;, i = 1, 2, - - +, A, represents a mu-
tiple edge pattern. If it is desired to fit N << n ideal brigis-
ness levels (V - 1 ideal edges) to the sequence {x;}, then the
edge operator should preserve the first *“2N - 1" sample
moments.

Hence, the following “2V" equations should be satisfied:

N
S phf=my  k=0,1,2,--- 2N~ 1 (14)
j=1
where
hj £ jth brightness level associated with N level ideal edge.
17 £ relative frequency of h; among the N brightness levels.
my 2 1.

Szego [18] has provided a solution to the above equations
under the context of Gauss-Jacobi mechanical quadrature
problem, where h;, j=1, 2, - -+, N, are the roots of the
polynomial .

my ﬁl my e ’iN

m, i, 3 Mipey
ghy=} : : : : Q%)
My.y MN My Py
1 hooont e WY
=AY 4 AN WY 44y (e

where (16) is an expansion of (15) by minors

mg &1 an




and p;’s. j= 1. 2. -+ - n, are the so-called “Christoffel num-
hers,” obtained by
N
pit= Y vaty) j=1,2 N (18)
m=0
where {Upn(x) € 7y}, m =0, 1, - - - | N, are orthonormal

polynomials associated with the input data distribution
1 N
f)= = 3 80c-x). (19)
k=1

It can be shown [19] that the solution presented above is
identical to solving the system of equations:

Co'ﬁo +Cl’7‘l + -+C~_lﬁN__l ='iﬁ2~_l

Co'Tll +Cl'ﬁ2 +”'+CN-lﬁN=-ﬁN¢l

CO’EN-I +CI'EN+'"+CN-lﬁ2N-2=hﬁ2N-l' (20)

Szego [18] has shown that the system matrix

my my my - Py,
my oMy
My.y My - Mayn-g @n

is positive definite if there are at least NV distinct values among
{x;}).,, and this in turn implies that equations (20) have a
solution. Once the values of Co, C,, - - -, Cy are found, the
step levels hy, 3, - -+, hy can be found from the roots of
polynomial

wix)=x¥ +Cy_ x¥ V4. 40y x+Co. (22)

It can be shown [19] that the roots of (22) are identical to the
roots of (16) and that the roots are all real valued and are
different from each other if there are at least V distinct values
among the x;.

Once we have found the N values of 4; the N values of p;,
can be found from the N equations

N
:p’hlk=’ik k=0,1,2,"',N'1. (23)
j=1
The theoretical steps, and the results derived in this section
were not based on the actual empirical edge data shape. The
method will obviously work if one is trying to fit an ideal step
edge to a set of nondecreasing empirical edge data shown in
Fig. 2(a). But if the empirical edge data pattern is as shown in
Fig. 2(b). the data must be broken into two monotonic pieces
and each edge found separately.

IV. RELATIONSHIP BETWEEN ESTIMATING AN IDEAL
EDGE AND ESTIMATING A PROBABILITY
DisTrIBUTION FUNCTION

So far, our objective has been to fit an ideal edge to a set of
empirical edge data. under the assumption that they form a
monotonically nondecreasing sequence. In this case an ideal
edge was characterized by two adjacent step levels &, and h,
and their relative frequency of occurrence . and p, where
Py ¥ Py = 1. But the ideal edge can also be regarded as repre-
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Fig. 2. Examples of multiple edge patterns.

P2

X
hi h2

Fig. 3. Relation of ideal edge parameters and a probability distribution
function.

senting a distribution function where h; and h, are the two
abscissa values (in general NV abscissa values for N-level multiple
ideal edge) where jumps of heights p, and p,, respectively,
occur (N - 1 jumps for the N-level multiple edge). See Fig. 3
for an example distribution function.

Estimation of a distribution function has been a well-defined
problem in statistics, and many techniques have been pre-
sented over the years to solve the so-called reduced or finite
problem of moments, i.e., the problem of determining or ap-
proximating a probability distribution from a finite number of
its moments. Hill [20] has described the more common of the
existing methods and has presented an explicit procedure for
utilizing them numerically.

Von Mises step function approximation {21] is similar to
the technique we use to fit an ideal N-dimensional edge to a
set of empirical input edge data by preserving the first “2N -
1” moments. If one knew the original edge data was not an
ideal edge, it might be possible to fit a curve other than the
ideal step edge to the data based on the sample moments.
Hill {19] and Ederton and Johnson {22] give example para-
metric curves used for fitting to various shapes of distribution
functions.

V. STuDpY ON EFFECT OF ADDITIVE NOISE
o~ Epce LocaTtioN

In this section we shall discuss the effect of additive, zero-
mean, Gaussian noise on edge location. The analytical model
is assumed to be

Zi=x, W i=1,2,00 . (24)
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where
x; = :th samiple of the original input data

It; = :nd2pendent identically distributed zero-mean,
Gaussian random variable.

with
E{Wmwli=0} i=j
=0 i#j
and
Z; = ith observed value.

An exact solution to the edge location jitter due to noise de-
fined as

e=n(p - p) 25)
where

P = measurad relative frequency

2 = true relative frequency

can be obtained in the following way. From (8) and (9) we
have

. f /1 /]
P p'<5 a+s: ‘Yars )/2

where

My +2M3-3M, M,
§= 2 @27)

(26)

(29)

and § is the sample skewness of the noiseless edge as given in
(9). As can be seen from (27)<(29), S is a function of W;, I,
Iy, - - . W}, therefore the mean-square edge jitter is

E{(ﬁ-p>=}=f_:[: f: G -0 fa

< (wy,wy. " ,wN)dw,d"v, < dwy,
(30)

where fiz(w,, wa, -+ +, Ww,) is the joint probability density
function of i.i.d. Gaussian random variables. Hence

L @y,

[ty owe, oo wy) = (2703‘_);' 2 31)
where
Wy
W,y
W=f :
“'"
B A A N N N N S N A NN

Substitution of (31) in (30) yields

£ =y [ )

. ! ; Wrﬂ'po’
(SV 4+5? p) ¢ N

~dwydw, - - - dwy,.

(32)

Evaluation of (32) is a Herculean task, therefore our effort
is'mainly focused toward finding some analytical solution for
edge location movement when some approximations are made
in the evaluation of sample skewness.

In general, one can write

M=EM}+Y, i=1,2,3
where

E{Y}=0
and
varl ) = var[M).

(33)

Writing the above explicitly for random variable M, , will yield

1 2 .
Y,==3 W (34)
na
E{M}=m, (35)
o
var[M,] = o (36)
For random variables M, , and M, we have
1 n
o= = 3 (W] +2x W - ol) (37)
i=1
n
Vo= 3 (WD +3aF Wi+ 35 W) - 3x0k)  (39)
i=1
1 n
E{M}= E{; > (x;+lv,)’}=ri,+ofv (39)
i=1
E{My}=m;3 +3m, oi,. (40)

Calculation of the variances of M, and M, is more cumber-
some [19] but the following results can be obtained:

_ . 5, 203
var[M,] = (2m; + 0y,) — 1))
_ _ oy 305
var[M;] = (37, + 125i; 02 + 50),) —~. (42)
In order to calculate edge location, one needs to calculate the
“skewness” of the observed data. From (9)
My + 2M3 - 3M M.
S = 3 1A 5 1 Y12 (43)
o
L b e N e N i NN
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where Hence from (47) 2'-“
g=\ -V E{S}=035+03E(Y,} - 30EfY,} = 0. (52)
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Combining (33) and (43).

S=

My +3my a3+ Yy +2(M, +Y,)? - 3(m, + Y,)(M, + 03, + y,)

Therefore we can state the following lemma.

According 10 (13), with no loss of generality, one may assume

m, =0 (45)
My =1, (46)
Then the observed skewness can be approximated as
S§=0%+0’Y; - 30Y, 47)
where
1
R “@

and the terms Y3, Y, Y,, Y1 are disregarded for the sake of
simplicity and due to small effect they have an S. This later
statement is verified when experimental and theoretical results
are compared. Substitution of (47) and (28) into (27) results

1 1
- o3 —— .
¢ Y’l’ 2vog7 T3 4+o°s’2]' (“49)

The mean-square error associated with edge location can then
be calculated as

cor SV

+'i_;—_6_2 (0 E{Y§}+9E{Y2}

‘6025{),1 Yg})] (50)

In the above equation E{Y?1}, and E{Y}} are respectively
given by (36) and (42); therefore one needs to find E{Y, Y5}
whose value can be easily computed by combining (34) and
(38) to give

1

E{NY,)=— {): u,z(w+3x

i=1 =1

W? - 3x.02
+ 3x; W 3x,ow)}

2
=40y 222 (s1)

We can make several observations based on (50). For large
amounts of noise we see from (48) that

(62 +0%, +Y, - Y- 2m, V)2

(44)

Lemma 1: Additive noise tends 10 move the expected value
of edge location to the center.

Next, for a low signal-to-noise ratio, and for large |§| values
(when the. edge location is toward the ends), the first two
terms on the right-hand side of (50), which we call the “bias
component,” are dominating. On the other hand, for small
values of |§} (when the edge is close to the center), the last
three terms which we call the “jitter components,” are dom-
inating. Fig. 4 provides an example for verification of the
above statements. In this figure an input edge data of sequence
length 20 was chosen. The x-axis corresponds to edge loca-
tion and y-axis corresponds to rms error in edge location. The
input signal-to-noise ratio is defined as
2

Ah
SIN £ 10log —;

w

dB (53)

where
Ah = height difference of idea edge
02, = variance of the noise. -

The signal-to-noise ratio was 6 dB for data in Fig. 4. The full
line corresponds to the bias terma, and the dashed line cor-
responds to the jitter terms. Fuxthermore, Fig. 5 compares
empirical and theoretical rms edge Jocation error.

VI. PREPROCESSING OF DATA TO
ACHIEVE MONOTONICITY

In the previous section, we calculated the edge location from
observed data that we assumed to be corrupted by additive
noise. However, in the presence of additive noise, application
of some preprocessing techniques, such as averaging and/or
median filtering [15] can on the average appreciably decrease
the error incurred in calculating the edge location.

For low noise conditions, median filters have the property of
removing impulses and oscillations while preserving monotonic
edges [23]. On the other hand, the averaging operation tends
to introduce distortion on edge location. To see that, let us
assume we have an input edge data sequence x,,,, m=1,2, -

n defined as follows:

0 mgr (54)
Xy = 4
” ) m>r.
If we use a three pixel wide averaging window the input and
output sample moments m,. and M, 1 = 1, 2, 3, are related in
the following way:

m, =m, (59
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Fig. 4. Two components of edge location error for (50). The solid
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(dc offset error due to the fact that additive noise tends to force the
edge location toward the center of the data). The dashed line repre-
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(ac erross due to additive noise). The sequence length is 20 points
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F.g. . Comparison of empirical and theoretical rms’ location errors.
The dashed line represents the theoretical curve (50) which is the
combination of the two components in Fig. 4 and the solid line shows
the measured empirical error using 200 trials for each edge location.
The seq.2nce length is 20 points and the signal-to-noise ratio is 6 dB.

! 2
' My = 1y - — 57
. my 3] in N
’ and
' n-r

"7_71 =”—11 =’T13= n (58)

The sar-le skewness associated with output sequence can
ther w2 . ntten as

w4 lm) - 3mym,
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Fig. 6. Theoretical error introduced by averaging an ideal edge using
a window of width three. The sequence length is 20 points.

Combination of (58)-(62) will then yield

5)
9n

2
ms - _3'_,""'2'%? ’3’3](’7‘12 -

4 3n
-2-__
(o 9n)
- 2r

3c, 2 (n

o3 3n(n )

4\
-2_—
(" 9,.)

From (60) we can conclude that centered edges remain un-
changed under the averaging operation. This is easily shown if
one substitutes O for § and n/2 for 7 in (60). For noncentered
edges when 0 <r < n/2, § takes negative values, and for
values of 7 in the range of n/2 <r <n, § takes positive values,
therefore from (60) it can be easily seen that averaging tends
to move the edge location toward the center, this is especially
true if the assumption

2

(60)

(61

holds. Fig. 6 shows the effect of averaging on an ideal edge of
sequence length 20, the x-axis corresponds to edge location,
and y-axis corresponds to rms edge location error. For com-
parison purpose Fig. 7 shows rms edge location error versus
various signal-to-noise ratio for a centered ideal edge of
sequence length 20. Even though averaging tends to intro-
duce some distortion, as a rule (especially for low signal-to-
noise ratios) one can use an averaging filter in the presence of
noise as a means to reduce error in edge location estimation.
The reason why this is true can be explained in the following
way:

Zi=x;+ W, i=1.2--.nm
i i i

(62)

Then.if a "k + 17 size averaging window is used. we will have
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1.36 4

.939 4

RMS Edge Location Error (pixels)

RENR
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0.00 6.20 12.4 18.6 24.8 31.0

Signal-to-Noise Ratio (d8)

Fig. 7. Rms edge location error as a function of signal-to-noise ratio.
The sequence length is 20 and the edge is located at the center of the
sequence.

3 1 j=itk/2
i=
k+1
1 j=isk)2 1 j=isk/2
= Xi+ -
k+1 j=iTk/2 k+1 jei k)2
=5+, (63)

From (63) the mean and variance of ID, can be easily obtained
and are equal to

E{W,}=0 (64)
(W) =2 (65)
var i %+ 1 .

As can be seen from the above equation, averaging always low-
ers the variance of noise by a factor of “k + 1" which is equal
to the width of the averaging filter. But as it can be seen from
Table 11, there should exist a thresholding signal-to-noise
ratio such that above that value use of a median filter is ad-
visable. Pomalaza [24] has compared the performance of a 3.
pixel wide median filter with an averaging filter of the same
size when applied to an ideal edge of two adjacent intensities
in the presence of additive uncorrelated noise. He has calcu-
Jated the variance of the output of the median filter around
the discontinuity and has concluded that the height of the
discontinuity has to be almost twice the standard deviation of
the noise for the running median estimate to start having less
mean-square error than the running mean estimate.

VII. EXTENSION TO TWO-DIMENSIONAL
EDGE PATTERNS

In this scction. the one-dimensional edge operator discussed
previously is extended so that it can operate on two-dimen-
sional edge patterns. This technique identifies an edge loca-
tion by a hre equation whose two parameters are calculated
according to criteria to be discussed in later sections. Also in

.
TABLE 1l
CoMPUTED MEAN ABSOLLTE ERROR MEASURES WITH AND WITHOUT
PREPROCESSING. SEQUENCE LENGTH = 20, EnGe Locarion = 6,
Numser of Trias = 200

B T T T

Mean Absolute Error

For S/N = 04dB

No preprocessing 4723

Using median filter only 4.040

Using averaging oaly 3.863

Using medisn filter first 4.030
and then averaging

Averaging first and 3857

* then using median filter

For §/N = 6dB

No preprocessing 3.718

Using median filter only 2.750

Using averaging only 2.410

Using median Glter first 2.503
and then averaging

Averaging first and 2074
then using median filter

For S/N = 10dB

No preprocessing 2.188

Using median filter only L4l

Using averaging only 1.153

Using median Glter first 1.138
and then averaging

Averaging first and 1.033
then using median filter

For S/N = 204B

No preprocessing .308

Using median filter only 154

Using aversging only A5

Using median filter first 76
and then averaging

Averaging first and .188

then using median filter

719 1
918]6 771514
9]8i8l7217]2})6]4}3
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alsjsf7i72 1716 |a]3
8s8i7]719fs1sf2i3
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71716153415 )4
71616 }315
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Fig. 8. (a) Empirically obtained edge element. (b) ldeal edge element.

this section the two-dimensional edge operator is comparcd
with Hueckel's edge operator.

In implementing the edge operator, an approach similar to
Hueckel [4] is taken to define the input and output of the
operator. In particular, the edge operator accepts as input a
set of grid squares consisting of 69 pixels, arranged so as to
best approximate the area of a unit circle [see Fig. 8(a)]. As
an output. the edge operator generates an ideal edge element
defined over a unit circle with two brightness values h,, and
Iy, along with the borderline that separates the two intensity
levels as shown in Figs. 8(b) and 9. A more exact definition
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y sina + x cosa * p

Fig. 9. Edge line equation as a function of a and ».

of the output disk is obtained if we denote the ideal edge ele-
ment by U(x, y, sin a, cos a, r, b, , h;), then

Ulx,y,sina,cosa,p,hy , h)=h, ifysina+xcosasp

U(x,y,sina,cosa,p,hy, hy)=h, ifysina+xcosa>p.

(66)

However, Hueckel chooses the quintuples (sin a, cos a, p, h,,
h,) so as to minimize the L; norm between input and output
data, i.e., he minimizes the quantity A(-),

a()= fm ! (=, »)
o

- Ux,y,sin a,cos @, p, hy, hy)]? dx dy (67)

where J(x, ) is continuous and constant over each grid associ-
ated with input data.

In our technique we first find the quantities p, h,, and h,
by preserving the first three sample moments between input
and output of the operator in the following manner:

1
ﬁikg;fjlk(xyy)dxdy=h¥pl+h§p2 k=0)l!2’3
D

(68)
where

A
py=— (69)

n
A, 2 the area on D covered by intensity k, (70)
P =1-p an
D= {x,y:x* +y*<1}. (72)

By assuming that /(x, y) takes constant values over each grid,
then the integral in (68) becomes a weighted sum of intensities
in the input disk. Therefore one can write

_ 9 &
me= S wilf k=0.1,2,3 (73)
1=1

I; = intensity associated with jth grid

w, = weighting associated with jth grid.
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Fig. 10. Indexing associated with each square grid,

Fig. 11. Areas to be added or subtracted for the calculation of weight-
ing coefficients.

One should note that indexes in (73) refer to grids shown in
Fig. 10, each having an area **4™ equal to

A=4d? (74)
where
d=1}.

The value *“1/9™ was chosen because of the requitement that
the input disk should best approximate a circle of radius one.

To find the weightings associated with each grid intensity,
if one takes into account the symmetry that exists among grid
areas, then

W = Wg = Way Wy = Wep = Wes = Wyeg = Wy

l(A -jf dxdy'f%jfdxdy
n 1, < *a;

= 8.4670539 X 107} (75)

where 25 and Q4 correspond to the area shown in Fig. 11.
The last term is added to take into account the areas of the
circle that are not covered by the grid. Similarly,
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TABATABAT =ND N

Wa TWo T wag T Wao T Weg T Weg = Weg = Wag

=0.13732918 (76)

W3 T W3 = Wi = Wey =0.015573185 a7
Finally.

We =W = W = Wy = 0.013068037. (78)

The remaini-g weighting coefficients are assigned a value of
*0.015719006.”

Once the moments m,, M,, and /M, are obtained, then (68)
corresponds to (5), and, hence the values of p,, pa, h;, h,
can easily be determined from (6)~(8).

Given a circle of radius unity, and an arbitrary angle 0 <K <
%/2, then the area “4” shown in Fig. 12 is given by

A=8- 3sin 26. 79
If we let

p =min (p;, p2) (80)
then, by combining (60) and (79), one can write

B- 1sin 23‘= np ¢3))
or

ﬁ-Bﬂcos[hﬂp. (82)

8

Equation (82) is a transcendental equation, and one can
use some numerical approximations [19] in order to obtain
B. Once B is obtained then

(83)

and, hence, by preserving the first three sample momems one
is able 1o determine h,, hy, and p.

Still left to be found is the direction of the edge, or in other
words, the slope of the border line separating the two inten-
sities h; and h;. The following approach can be used to find
the direction of the edge.

Assume an ideal edge element with grey level intensities
h, and k, inside the circle x2 + x? = 1, Define

J-J.xdxdy+h,fjxdxdy
ffdxdy-fhzjjdxdy
J‘fydxd} +h,ffydxdy

;= (85)

y=
h, {fd,\d) +h,ffdxdy

‘o

p=cosf

(84)

as the coordinates of the center of gravity of intensities in-
side the circle, then the direction of the edge is perpendic-
ular to the direction of the vector from the origin to (X, ¥).
Machuca and Gilbert [9] have used the above idea in deriving
their edge detector. Therefore, by combining (7), (8). (84),
and (83). one can write the.edge line equation as
ysina+xcosa=-p p,<p;

Pl >P:

PRI

¥ sina+xcosa=p

---------------
............
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Fig. 12. Region 4 shows the area to be calculated in (79).

where

sina=

I; & intensity of jth grid
(%7, ¥7) & coordinates of the center of jth grid.

A minus sign appears on the right-hand side of (86) when p, <
P2, because the center of gravity should always be located
closer to the set of pixels with higher intensities.

Table III shows the results obtained when the operator is
applied to different empirical input edge patterns. Also, for
the sake of comparison, the results obtained when the Hueckel
edge operator is applied to the same input edge patterns, are
shown.

VIII. THE EFFECT OF ADDITIVE NOISE
ON 2-D EnGE OPERATOR

In Section V an analysis of the effect of an additive white
Gaussian noise on p was provided. The effect of additive noise
on the slope of the edge line can also be theoretically analyzed
[19]. Here we will present only empirical results.

Fxgs 13 and 14 show the effect of noise (S/N 20 dB) oo

P

X .,
..............
.......
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TABLE 111
APPLICATION OF EDGE OPERaTOR TO DIFFERENT EDGE PaTrERNS:
Two-Divensionar Input EDGE PaTrers

Tacwninetsivbai wapui Loge Pattera ) Two-Dimensional Input Edge Pattern
¢000 §0.00 $0.00 190.00 190.00 0.0 030 040 060 0.80
$0.00 80.00 €0.00 90.00 190.00 190.00 160.00 010 020 030 040 060 08 100
.00 $0.00 60.00 90.00 90.00 190.00 190.00 180.00 190.00 0045 010 020 030 040 060 0820 100 100
€0.00 €0.00 90.00 0.00 90.00 190.00 190.00 190.00 190.00 v.00 010 020 030 040 060 08 100 1.00
0,00 000 ¢0.00 $0.00 60.00 180.00 190.00 190.00 190.00 000 010 020 030 040 060 080 100 1.00
€0.00 90.00 60.00 90.00 90.00 190.00 190.00 190.00 180.00 000 010 020 030 040 060 080 100 1.00
%0.00 90.00 60.00 90.00 90.00 190.00 190.00 190.00 190.00 000 010 020 030 040 060 080 .00 100
©¢0.00 60.00 $0.00 $0.00 190.00 190.00 190.00 ) 000 020 030 040 060 0.80 1.00
90.00 €0.00 $0.00 190.00 190.00 . 020 030 040 060 080
Result of Application of New Edge Operator Result of Application of New Edge Operator
two aljacent brightoess intensities two adjscent brightness intensities
90.000(000 190.000000 0.207845 0.860504
edge Lne equation is edge line equation is
(0.000200)»Y + {1.000000+X = 0.111111 {-0.000000)+Y + (1.000000}«X = 0.124466
Result of Application of Hueckel Edge Operator Result of Application of Hueckel Edge Operator

two 2jacent intensity levels
two adjacent intensity levels
89.80581 139.566132
0.073249 0.061764
line e 1ation representing edge location
line equation representing edge location
(0.000200)sY + (1.000000)*X = 0.10868%
(0.000000)+Y + (1.000000)X = 0.062878

Two-Dimensional laput Edge Pattern

10.00 10.00 10.00 10.00 1000
10.00 10.00 10.00 10.00 10.00 10.00 10.00
15.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
20.00 20.00 15.00 10.00 10.00 10.00 10.00 10.00 10.00
20.00 20.00 20.00 20.00 15.00 10.00 10.00 10.00 10.00
20.00 20.00 20.00 20.00 20.00 20.00 15.00 10.00 10.00
20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 15.00
20.00 20.00 20.00 20.00 20.00 20.00 20.00
20.00 20.00 20.00 20.00 20.00

Result of Application of New Edge Operator

two adjacent brightness intensities
10.162881 19.837120
edge line equation is
(-0.897350}+Y + (-0.441320}eX = 0.000000
Result of Application of Hueckel Edge Operator

two adjacent intensity levels

10 922482 B. 448722

et

line equation representing edge location

10.8gingt)eY + (0 1143501 X = 0.127229
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Fiz 13. Effect of additive noise on quantity p of edge line equation
lor the proposed 2-D edge operator (solid line) and the Hueckel edge
operator (dashed line). The signal-to-noise ratio is 20 dB.
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Fig. 13. Effect of additive noise on the slope of the edge line equation
for the proposed 2-D edge operator (solid line) and the Hueckel edge
operator (dashed line). The signal-to-noise ratio is 20 dB.

the slope and on the quantity “‘p” for both the new edge and
the Hueckel edge operators. As it can be seen from the fig-
ures, the new edge operator outperforms the Hueckel edge
operator when estimating p and does almost as well on estimat-
ing the slope of the line. Note that the solid line corresponds
to the new edge operator and the dashed line corresponds to
the Hueckel edge operator.

IX. APPLICATION OF EDGE OPERATOR
AS AN EDGE DETECTOR
In this section, our edge operator was repeatedly applied to
a digital picture of size 256 X 256 (see Fig. 15). The size of
the input disk used was that of Fig. £. and whenever an ac-

Fig. 16. Results of applying various edge detectors to a binary airplane
image. Upper left: Original range (256 X 256 pixels). Upper right:
Sobel edge detector. Lower left: Hueckel edge detector. Lower right:
New 2-D edge detector.

ceptable edge pattern was encountered on the input disk the
edge operator would generate the edge line equation as output.
For the purpose of display the edge line equation was used
to set pixels closest to the edge line to some predetermined
intensity value (e.g., 255) resulting in a binary output picture.

Fig. 16 shows the original picture, along with the result of
the application of our edge detector with that of Hueckel and
Sobel. Fig. 17 shows the performance of different edge opera-
tors in the presence of noise (signal-to-noise ratio is 6 dB).

The criteria for acceptance of a pattern as an edge was based
on

|hl 'hzl)k (87)
where

hy - hs| = magnitude of height difference for the
projected ideal edge.

r f.'ll"..i
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Fig. 17. Results of applying various edge detector to a binary zirplane
image with additive noise (SNR =6 dB). Upper left: Original image.
Upper right: Sobel edge detector. Lower left: Huecke] edge detector.
Lower right: New 2-D edge detector.

A lower bound on the value of A can be found in the following
way. From (6) and (7) we have

AT

- ozhz) ) lepz . ®8)
Since p; +p; = 1,3and p; p, < 1 therefore

(hy - hy)? > 40? (89)
or

Iy - hyl > 20 (90)

where

02 £ variance of the observed data.

Now, if (88) is not satisfied then we conclude that an edge
pattern is not present, otherwise we test for the condition

l di B de
_— 5 91
! d,+d, <0 ©1)
where

= 2(h, - hy)sin®s
i 3m n

= distance of the origin from the center of gravity
of projected ideal edge

de= ViT 45
= distance of the origin from the center of gravity
of empirical input edge pattern.
If condition (91) is satisfied as well as (88), then we conclude

that an edge pattern is present.

X. CoNcLUSIONS AND DiscusSION

A new edge operator has been presented which cun Jocate an
edge to subpixel accuracy in one. and two-dimensional data.

The method gives the edge location in closed form and re-
qures no interpolation or iteration. It is invariant 10 additive
and multiplicative grey level changes. The method assures
that the data are monotonic over each segment and thus each
edge region must be first detected before the exact location
is measured. If noise is present in the data, it is often beneficial
to preprocess the data (averaging or median filtering) prior
to the edge location operation. It is noted that noise in gen-
eral tends to bias the detected edge location toward the center
of the data. Therefore the most accurate edge location can be
made when the edge is as near to the center of the data seg.
ment as possible.

Although the operator was developed to locate edges, it
may be used to locate other shapes. For example, a pulse
shape in one-dimensional data may be located by first inte-
grating the data and then locating the edge in the resulting
sequence. A thin line may be located as two-dimensional
data similarly by performing a two-dimensional integration
and locating the resulting two-dimensional edge. Other
shapes may be located by first preprocessing (filtering to
remove unwanted frequencies), integrating (to give a mono-
tonic sequence), and fitting a parametric monotonic curve by
matching moments as described in Section IV.
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Abstract

A two-dimensional edge operator is developed which
matches an ideal step edge to a window of data using
two-dimensional moments. This method requires no
iteration and can locate edges to sub-pixel accuracy.
Sensitivity of the operator to noise is evaluated both
theoretically and empirically.

L - I. Introduction

. It is often necessary to find straight edges in a digital
image and to locate their position precisely. Many edge
detection schemes have been proposed {1-3] which are

- based on gradient methods (such as Sobel) or template
" correlation (such as Frei and Chen). Edge location is
= more difficult, the most accepted method being that pro-
[ posed by Hueckel [4-6].

An edge detector and locator is proposed here which
matches a circular section of an image to an ideal step
edge model using two-dimensional moments. This
method is much simpler to implement than that of
Hueckel and appears to allow more accuracy and noise
immunity.

1. Definition of the Edge Operator

The ideal edge model is shown in Fig. 1 and is
characterized by four Earameters h, k, ¢ and 9. The edge
is 8 straight line which separates two regions of constant

ey values.The lower level has height h and the upper
evel is k higher than the lower level. The angle which
the edge makes with the y axis is 4 and ¢ is the distance
from the center of the disk to the edge.

The moments of an image f(x,y) of order p+q are
defined by P
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The disk is defined to have radius of one. Thus the lim-
its of integration are the unit circle i.e., Vii+yi<1. A
closed moment set (CMS) of order n consists of all
moments of order n and lower and is closed with respect
to the operations rotation, translation and scale change.
For the edge detector the CMS of order-2 is computed i.e.
{Moo. M1, Mio. Mo My, Mao}.

A rotation of the disk by an angle ¢ changes the
moments as specified bi

M= 35 5 k1) cos 677" %oin 61*™ My qraren

(2

First, to obtain 6, consider rotating the edge region so
that the edge is aligned with the y axis as shown in Fig.
2a. At this position there is symmetry about the x axis

therefore
My = 0 (3)

From (2) the value of My can be obtained ip terms of 4.

M, = Mg, cos & = M, sin @ (4)
From (3) and (4) ¢ is determined
= -1 Mo,
0= tan” T (5)
10

In order to determine the other edge model parameter,
the moment set is rotated by the angle ¢ using (2) until
the potential edge is aligned with the y axis as shown in
Fig. 2a. The value derived for ¢ from (5) may need a
correction of r since there are two possible ways to align
an edge with the y axis. A unique value of ¢ is obtained
by the additional constraint that M;, > 0 this ensures that
the higher level of the rotated edge is on the right and
the lower level is on the left in Fig. 2a.

The location of the edge, ¢, may be derived from the
rotated CMS (M}. In fact, only the moments with

My = [ [ x®y¥(x,y)dxdy (1) respect to the x axis i.e. {Mg, My, My} are required. This
h+k
Ih T X
Fig. 1. Model of an ideal edge. (b)
Fig. 2. a) ldeal edge aligned with the y-axis, b) Projection of
Supported in part by the U.S. Army Research Office. edge onto the x-axis.
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moment set corresponds to the moments of a projection
through the edge model onto the x axis as shown in Fig.
2b. The moments may be specified in terms of h, k and ¢
by integrating ol! the elliptical sllupm shown in Fig. 2b.
My = 2 [ Vi-xTax + 2 { Viexdiax
=1
=hr+ "T" - ksin Yf) - HVIEE ®)
1 t
M = 2 [ xVi=ddx + 2 { xVi—x%dx
<1
= L /P )
1 b3
My =2 [ x? Vix¥dx + 2k { x? Vi=ddx
MY

= LY

4
- -:— @VITE + sin”'(0)) 8)

Equations (8), (7) and (8) may now be combined to solve
fort ie.

Min= 20 Mo - 3 M ®
_ Mg - My
= ML (10)

Once # is determined the two values h and k may be
obtained by back substitution

__3 Mie
v (1)
- 2M..—t(:—z.i;;'m-2h/1'-?) (12)

The other moments in the CMS, i.e. {M,,M;, Mg} may
also be specified with respect to h, ¢ and K. Since there
is symmetry about the x axis in Fig. 2a,
M;l = o' (13)
My, = 0. (14)
To determine M, consider the projection of Fig. 2a split
into two components, if § > 0. (When ¢ < 0 compute 541
- the section of the k height disk).
1 vig
M= | yWViyldy +k y*V1-y'dy
-1 -vif
Vi
-k vt dy
-V

= !:‘ + “:‘(NH’ + sin"{(Vi7))

=%m-ﬂ—j—“;'(3ﬂ+l+4w) (15)

Once ¢ and k have been obtained for a potential edge the
value for M,, can be predicted. A figure of confidence can
then be generated by comparing the predicted and actual
values for Mg. Alternatively, the value of M,, can also be
used as a confidence measure.

[I. Implementation of the Edge Operator

In order to compute the parameters, the 8 values of
the CMS of order 2 must be estimated then the model
parameters can be computed. Each estimate is made by
multiplying the elements in the local area of a pixel with
a weight mask and summing the results. First, M,, and
M,, are needed to estimate 4 by (5). Then to obtain the
rotated moments, use

cos() = %
) (16)
sin(¢) = %
where
M, = VM + M (17)

These values can be used to obtain the rotated moments
by substituting into (2).

Moo = Moo
M;o =M, (18)
M. = (MEMze + 2Mg MM,y + MEiMo,)
20 < M‘g
Then ¢ is obtained by substituting these values into (10)
M M
f= "M, (19)

where
My = S(MiMz + MaMuMy + MiMe)  (20)

M= SMe (21)

When needed the level height parameters can be com-
puted from {M, M, M.}. The procedure to obtain the edge
parameters is as follows:

1.  Estimate {Mgo,Mo;,M;0Mo.M;;,Mp}.

2. Compute ¢ from (5).

3. Compute M, from (17).

4. Compute the distance to the edge, ¢ from (19)
through (21).

The edge height k may be obtained from (11).

6. The background level h may be obtained from (12).

&

IV. Moment Value Estimation

In practice a region of an image is usually
represented by a matrix of sampled intensity values
called pixels. In order to estimate the moments for a cir-
cular image from a set of pixels, several assumptions and
approximations must be made.

A circular region defined on a 5x5 matrix of pixels 1s
shown in Fig. 3. The problem is to compute the exact
contribution (weight) of each pixel to each moment value.
The first assumption is that a pixel contains the mean
value of square region it represents.

In Fig. 4 the three basic monomial functions are
shown in one dimension. If a pixel has a constant value
and is competely inside then the contribution to a
moment function is proportional to the integral of the
basis function in the region of the pixel. For a pixel

located at point i with width j, the pixel region is i - 12- to
i+ é— For M, we have
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Fig. 3. A circular region defined on a § x 5 pixel matrix.

1.0

L
vd

region of a pixel

Fig. 4. Three basis monomials and a pixel region width j.

i
g~

J x%x = (22)
4
Since j is constant for each pixel, the weight is the same
for each pixel.
For M, we have

i
3

J x'x =ij (23)
4

In this case the weight of each pixel is proportional to its
position. Weight masks for M,, and M,, can be generated
using this algorithm. The product of these two masks
gives the mask for M, since it is separable.

Finally for M; we have

i+
2

s 1 .
fL x¥x = iY +ﬁ" (24)
2

In this case we get the expected i%j term which indicates
that the position of the pixel squared is the dominant fac-
tor, however, there is also s small constant term which
must also be added. Masks can be generated for M,, and
M,, using (24).

Pixels whose regions are intersected by the boundary
of the circle must be treatcd in a special way. Since we
only have to generate these masks once, a simple brute
force method was used to generate the weights for these

ixels for our experiments. Esch pixel region was split
mto s 401 x 401 submatrix; the contributions of each

LR RN AL A AL S el il ORI et Giade Mo atna

subpixel within the circle to the moment value was then
summed. Since the sub pixels cover a very small ares,
any sub pixels which were intersected by the circle boun-
dary could be ignored without significantly affecting the
total summed value for the whole pixel.

V. Radial Weighting

Hueckel [3] has argued that the basis functions for
on edge detector should diminish to zero at the edge of
the disk. That is, more emphasis is placed on the pixels
near the center of the disk, the idea being that extrane-
ous, less-reliable information is more likely to be located
near the edge of the disk. If this assumption is made,
then the edge detector should omly be used to detect
edges near the center of the disk.

The moment basis functions, except for M, all have
greater valu:n at the edge of the disk thsa the center.
Two radial weighting functions were considered for the
moment edge detector. The first function v1~r* where
r= VxZ + y? is equivalent to multiplying the circular edge
region with a hemisphere and the second, 1-¢* is
equivalent to multiplying the edge region with a parabolic
gc_:nlr(]e. Both functions diminish to zero at the edge of the

isk.

Hemispheric Weighting Function

. U;ing a V1 - ¢ weighting function, the moment H,, is
given by
Hy=J [oyWi-(x* + yo)i(x,y) dx dy (25)

The procedure for rotation normalization is unchanged by
the weighting function. The rotation normalized
moments with respect to the x-axis over the unit circle
may be simplified to

Hpe = % J (1 -x% [ fix,y) dy dx (26)
With some manipulation the edge location may be
obtained by
0= 30H,, — 6Hg,
T uH,

Once ¢ has been determined, k and h may be found as
follows:

(27)

_ 8H,o
T oz 1 (28)
b= SH- -y + 0 (29)
2x 4

Parabolic Weighting Function

Using a 1 - r* weighting function, the moment G, is
given by
G’q = I f x'yﬂ“ - (x2 + yz)l“x'y)dx dy (30)

The procedure for rotation normalization is unchanged by
the weighting function. The rotation normalized
moments with respect to the x-axis over the unit circle
may be simplified to

Gpo = -;- f x* V(1 —x’)’f f(x,y My dx (31)
With some manipulation, the edge location ¢ may be
obtained by )
(= 6Ga — Goo
T 8Gy
Once ¢ has been determined, k and h may be obtained as
follows:

(32)
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Mo

+ L0 - ppn 4 Leiag) (34)

V1. Blas Effects Due to Pixel Quantisation

The ideal edge that is fit to the data in Section 1
does not allow for the quantization effects due to finite
pixel size in the real data; i.e., the gray value is assumed
coustant over each pixel in the real data. This introduces
a bias error in the calculated edge location. This is
demonstrated in Fig. 5 where the difference between the
calculated edge iocation and the actual edge location is

lotted. The ideal edge pattern is generated assuming an
ideal continuous edge and a square sampling aperature
equal to the pixel size. The ideal edge is oriented verti-
cally and its location is varied from -3.5 pixels to +3.5
gj:els from the center of s window of diameter 9 pixels.
e error is zero when the edge location exactly matches
pixel boundaries. Also, the error is zero when the edge is

€rror Cyn preeis)

- T

-19 N -1 9 - % %0 1.3 23

True Edge Location (10 pleels)

Fig. 5. Bias error effects due to pixel quantization. Shown is
the difference between the measured location and the true edge
location, and is due to finite pixel size in the moment calcula-
tion. The three cases shown are for unweighted (A), hem-
ispberic (B), and parabolic (C) window weightings.

Fig. 6. A three-dimensional plot of the bias error for edge
orientations ranging from 0 to 45°, and location ranging from

located close to the center of the window. When the edge
is located at an angle of 45°, the bias error increases con-
siderably. In this case, the edge never is located along
pixel boundaries. Shown in Fig. 6 is the bias error for
edge locations ranging from 0 to 3.5 pixels from the
center of the window, and orientations of the edge rang-
ing from 0° to 45°. Although this bias appears
significant, the calculated edge location versus true edge
location is always a monotonic function, and thus a table
look-up procedure can be used to subtract this bias effect
and give perfect edge location results when no noise is
present.

VII. Effects of Noise on Edge Location

Assume additive, independent, identically distri-
buted, Gaussian noise is added to the pixel gray values.
The calculated edge location and orientation then become
random variables, Assume also that ¢ is zero,
consequently the moments need not be rotated. The ran-
dom variable length can then be viewed as

' - 4Mm- M“ + 0y
3M + n;

where (35) is a direct extension of (10). The random
variable », is zero-mesn and Gaussian with variance
o} =0 [ [ (4x? = 1) dxdy (36)

where o is the variance of the additive noise and the

integration is defined over the umit circle. The random

vatriable n, is also zero-mean and Gaussian with variance
o} = o [ [ (3x)* dxdy (37)

The variances of the random variables arise from the
multiplication of the  additive noise with the moment
masks described in Section IV. Since the noise values are
independent, zero-mean, and Gaussian, the density of the
summation of N values remains zero-mean and Gaussian.
The multiplicative constants determined by the integrals
in (36) and (37) can also be calculated from the moment

(35)

masks; ie,
C = ??l‘mmﬁvi) - meolii)f? (38)
C, = g)’TIISm.o(iJ)l’ (39)
so that
a} = °C, (40)
o} = ¢°C, (41)

where my(i,j) is the o moment mask weight for the it j*
pixel position withing the mask window. For a 9 x 9
mask window set, these multiplicative constants are:

Unweighted: C, = 0.1307
C, = 0.3067
Hemispheric: C, = 0.0468
C, = 0.1082
Parabolic: C, = 0.0287
C, = 0.0547

Since these constants are less than unity, the variances of
&, and n, are less than the variance of the additive noise
alone.

The numerator and demoninator of (35) can now be
viewed as the quotient of two independent, non-zero
mean Gaussian random variables. The means of the
oumerator and denominator are simply 4My—My and
3M,,, respectively, while the variances are that of a; and
n,. Therefore, the length has a Cauchy-like distribution.

- e
AT
DI

v

"' -. LN -

o

0 to 3.5 pixels. The Cauchy density has no absolute moments [7]. The
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robability density function for the quotient of two
ndependent, non-zero mean Gaussian variables X, and X,

Xy/oy
W= Xefos (42)
is given by
piw) = pilw) “o<w<-l 43)
= pi(w), i<w<0
= p'(w), 0<w<l1
= pyt(w), 1<w<oo
where M 2
pilw) = ;‘;”"’[% [% * %“
o o 1 lll_z_ ﬁ_@
£55 dy s 2] (=2
Sy DE+E+1+1)
X p(-1f
@ o 1 1 V2 " w2 o
*LLL Gy il . r [ 2 r
« Wit Hm+atp+2)
[0 )
0< [w| <i (44)
and 2 2
pal(w) = %elp[:;' l% + ";_::]l
apg 1 1 [l (2
“XTY X @ [ 2 H ”
N '-mnu) M
-1y
cew . . uyV3 +1 V3 +1
*z.:z.:z': (2m+1) (2a+1)p )dl r l :’z r
gy [imtotp+2)
pl-1y '
1< |w] <o (45)

An ideal edge oriented vertically and located 1.0 pix-
els to the right of center is generated and random noise is
sdded to each pixel. The signal-to-noise ratio is defined
as

SNR = 10 m..% B (48)

where k is the edge height difference (11) and ¢ is the
variance of the additive noise. One thousand indepen-
dent experiments are performed and the statistics of the
measured edge location are recorded. The signal-to-noise
ratio is set at 20dB. The sample mean and variance that
were recorded are 0.9989 pixels and 0.00885 pixels®, respec-
tively. Since the density is Cauchy-like, the moments
should not exist in a strict mathematical sense. There-
fore, a ranking method is chosen as another statistical
measure. The median is used and it's value is 0.0986 pix-
eb. Since the sample mean and median are very close in
value, the mean is retained as a valid measure.

The variability of # is now considered. Again, zero-
mead Gaussian noise is added to the data. The noise
case can be considered the extension of (5) such that

o |Ma 0y
0= tant | (47)
M“ + L 1Y
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The random variablea o, and n, ave independent and
zero-mean Gaussian. The variances are given by

o}=0 [ [ytdydx = 6*Cy (48)
0} = o [ [ xdxdy = o*C, (49)
where o? is the variance of the additive noise and the lim-
its of integration are the unit circle. The mean values are

M, and M,, respectively. The multiplicative constants
can again be obtained from the moment masks

Unweighted: C, = 0.034072
C, = 0.034072
Hemispheric:  C, = 0.012022
C, = 0012022
Parabolic: C, = 0.006076
C, = 0.006076

The deusity function of # is similiar to that of the
length with the transformation
s =taa'w = tu"? {50)
For an edge location of one pixel, & true value of ¢ equal
to 45° and a signal-to-noise ratio of 20dB, 1000 indepen-
dent experiments were performed. The sample mean was
44.99°, the standard deviation was 1.582°, and the
median value was 44.80°. Again, the median and mean
value show little difference.

Figs.7-10 represent the mean error and standard
deviation of the length for signal-to-noise ratios of 8 dB
and 20 dB. The edge locator performs quite well when
the edge location is within 2.5 pixels of the center. The
RMS error is maximum at the extremes of this region.
The RMS error for the 20dB SNR case at 2.5 pixels is
only 0.2 pixels. As can be seen in Fig.10, the effects of
noise can be reduced by using the radially weighted
operators as compared to the unweighted operator. This
reduction is greatest near the center of the window.
However the weighted operator’s performance is reduced
when the edge location is not near the center of the

window.
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Fig. 7. Sample mean of edge location error versus true edge
location. The weightings used are unweighted (A), hemispheric
(B), and parabolic (C). The signal-to-noise ratio is 20dB.
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True Edge Location (1n pieels)

Fig. 8. Sample standard deviation of edge location error
versus true edge location. The weightings used are unweighted
(A), hm&m (B), and parabolic (C). The signal-to-noise
ratio is .
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Fig. 9. Sample mean of edge location error versus true edge
focation. The weightings used are unweighted (A), hemispheric
(B), and parabolic (C). The signal-to-noise ratio is 6dB.
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Fig. 10. Sample standard deviation of edge location error
versus true edge location. The weightings used are unweighted
{A), hex:‘;spheric (B), and parabolic (C). The signal-to-noise
ratio is 6dB.

VIII. Conclusions

A new two-dimensional operator has been defined
which can accurately locate ideal edges in the presence of
noise. The edge orientation and location is calculated by
estimating two-dimensional moments directly from the

ixel values within the window and requires no iteration.

he operator can be used as an edge detector by calucu-
lating a confidence measure that indicates how well the
ideal edge matches the empirical data.

References

[1] A. Rosenfeld and A. Kak, Digital Picture Processing,
Academic, New York, 1982.

(2] W. Pratt, Digstal Image Processing, Wiley, New
York, 1978.

[3) W. Frei and C.C. Chen, “Fast Boundary Detection:
A Generalization and a New Algorithm,” /EEE
Trans. on Compulers, Vol. C-26, pp. 988-008,
October 1977.

[4] M.F. Hueckel, “An O}mmtor which Locates Edges in
Digitized Pictures,” /. Assoc. Compul. Mach., Vol.
18, pp. 113125, 1971.

5] M.F. Hueckel, "A Local Operator which Recognizes
Edges and Lines,” J. Assoc. Compst. Mach., Vol
20, pp. 634-647, 1973.

6] M.F. Hueckel, “Erratum for [5],” J. Assoc. Compet.
Mach., Vol. 21, p. 350, April 1974,

7] M. D. Springer, The Algebra of Random Variables,
John Wiley, New York, 1979.

T~ —v~—v—%

.
r-

5

B

3
.
B
% % e S0t
LSS 20 2N 2

P
-

. .".l. .

s % e -t

P L
PR
et




—- e —T T ey v
. T T o T Iy e T~
O NEA P P AN A AL A it s e

APPENDIX D
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TARGETS IN DIGITAL IMAGES
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APPENDIX D

DETECTION AND SUB-PIXEL LOCATION OF

PHOTOGRAMMETRIC TARGETS IN DIGITAL IMAGES

Edward M. Mikhail
School of Civil Engineering

and

Mark L. Akey and O. R. Mitchell
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907, USA

Data consist of aerial digital images with ground targets in the form of crosses of
different dimensions and orientations. Location and recognition of the targets relies on
Fourier descriptors and on two-dimensional moments. Further processing employs least
squares adjustment of the target shape in order to precisely determine the position (X
and Y) and orientation 6 of each cross to a fraction of a pixel accuracy. Results are
given from tests with synthetic crosses on a real terrain digital data base. Accuracies
achieved have reached to within 0.03 - 0.05 pixel. Digital image compression has shown
to cause cross targets to shift in location by as much as 0.5 pixel.

Paper presented at the Specialist Workshop on Pattern Recognition in Photogrammetry.
Sponsored by the International Society for Photogrammetry and Remote Sensing, Graz,
Austria, Sept. 27-29, 1983.
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1. Introduction

Modern photogrammetrists are expected to increasingly deal with digital images.
1 Such images are either directly acquired, as for example by push broom line arrays or
s multispectral scanners, or indirectly through digitizing photographs. The primary
interest has been, and will continue to be, in the extraction of accurate geometric infor-
, mation from the images. This information often concerns well defined features such as
. edges, lines, crosses, and the like.

Working with digital images allows the photogrammetrists to avail themselves
with a variety of digital image processing operations for different purposes. The
characteristics of these processing operations are known in general terms to those speci-
' alizing in image processing. However, to the authors' knowledge, their precise effect on
the geometric integrity of the imagery is neither known, nor has it been investigated.
Needless to say the photogrammetrists need to know such an effect so that they may be
able to properly provide the metric information from the digital images as well as their
i associated accuracy.

The paper is considered to be a complement to another paper presented by the
author at the 39th Photogrammetric Week [7]. The overall objective of the research is
the ability, and the accuracy with which, to extract metric information from digital
images, and the influence of digital image processing algorithms on the accuracy of such
information. The paper in reference [2] covered the chronological development of the
research effort. Because of the theme of this Workshop, this paper will concentrate on
the automated aspects of the work. We will discuss first the location of edge features,

then that of crosses.

2. Edge Location using Moment Preserving Method

The method of edge location by moment preserving is described in more detail in
(11}, and developed at the School of Electrical Engineering, Purdue University.

For simplicity, let us first consider the one-dimensional case, in which an attempt
is being made to model a set of data to an ideal step edge as shown in Figure 1. The
three parameters defining the edge are: h; the signal value below the edge, h, the signal
2 value above the edge, and X the location of the edge. Moment preserving is used as the
criterion of best fit of a set ] of n data points to the ideal edge f(s). Rather than solve
directly for X, the edge location is defined as k + 1/2 where k is the (unknown) number
of samples below the edge. Since there are three unknowns, we set the first three sam-
ple moments equal to those associated with the ideal edge, that is:

m; = % hi+ 2K i forj=1,23 (1) S

where
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=1 zn: (2)
n ;o ,. ]
is the j*» sample moment, and j is a power. The three equations given by (1) may be o
solved directly in a closed form. In particular, the solution for k is given by ‘N
k=D (1-—t 3 ]
> (- 7==) 3) Y
where
¢ = L [3m,m, - m, - 2@))
] o3 ]
is the skewness of the data, and '. 1
o =, -m; . g
3 From equation (3) it is clear that k need not be an integer, and therefore sub-pixel edge S
k location is obtained directly. This method. of edge location assumes that the data con- o ;;;;'L
sists of monotonically increasing values. This will not be the case if noise is present. » .
{ Preprocessing of the data to smooth out noise oscillations improves results significantly. T
[ Moment preserving is very simple to apply, and yields unbiased estimates if the edge
lies near the center of the area considered. Reduction of any biasing effects are

obtained by recentering the area to be modeled with an initial solution.

3. Least Squares Location Model

Let f(s,t) represent the output of a perfect imaging system, that is, the ideal pic-
ture function. Consider next a linear, spatially-invariant imaging system with a nor-
malized poir .-spread function p(s,t) assumed known. Then let I(s,t) denote a random
variable representing the measurement at sampling position (s,t). We may model the
measured quantity using the convolution

st) = [ [ f(&n) pls—€,t—n)dedn (4)

00 00
Consider now a set of u parameters X which completely characterizes f(s,t) over the
region of interest. Equation (4) may be rewritten as

I(s,t) = f{s,t;x) * p(s,t) = 0 (5)
where * denotes the convolution operation.

Then for the ijtt picture element which is a sample of i(s,t) at s =s;, t =t;, we may
write a linearized condition equation of the form (dropping (s,t) for simplicity)

l ’+ Vi + BuA —Fu( ) (6)

where
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iij° is the initial estimate for the observation,

v;; is the measurement residual,

Fi(x) = —f;(x) * p3 »

By is the set of partial derivatives of Fjj(x) with respect to the parameters,
evaluated at x = x°,

X0 is the set of initial parameter approximations, and
4 15 the set of corrections to the parameter approximations.

s Equation (8) represents a single condition equation for the model known as Adjustment
- by Indirect Observations. The total set of equations can then be solved by forming the
k normal equations in the conventional manner [5].

One-Dimensional Edge

_ Consider the ideal model of an edge or discontinuity present in a one-dimensional
i signal f(s), as shown in Figure 1. This may be expressed as

- f(s) = hy + (hg~hy) U(s—X) (@
where U is the unit step function

Us) =1, s20

=0, s<0
The one-dimensional form of equation (4) is:

I(s) = f(s) * p(s) (8)
where p(s) is the system line-spread function. It can be written in the linearized form

of equation (6). If p(s) is a Gaussian function, the spread edge will take the general
form depicted in Figure 2.

Other spread functions, as for example a rectangular function, can be used. It is
also possible in the least squares solution to ”self-calibrate” by estimating the parame-
ters of the selected spread function. Thus, in addition to h;, hy, and X (z~e Figure 1), a

parameter d, representing the width of the spread function, is also estimated. Table 1
- summarizes some of our early results from both methods.
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Data Characteristics Root Mean Square Error (pixels
Spread Spread Noise Moment Least
Width Type Level | Preserving Squares

0% 0.073 0.000
Rectang. 1% 0.074 0.010=
10% 0.192 0.106*
1 pixel
0% 0.027 0.003
Gaussian 1% 0.032 0.015
10% 0.223 0.164
0% 0.007 0.000
Rectang. 1% 0.024 0.023
assumed 10% 0.299 0.231
unknown . 0% 0.011 0.000
Gaussian 1% 0.033 0.033
10% 0.384 0.346

Table 1.  Edge pointing with simulated data. The starred (*) values were obtained using best param-

eter approximations.

The tests made were limited to simulated data with two types of spread function,
and therefore all statements regarding the performance of the algorithms should be
‘ interpreted with this in mind.

1) The least squares model using a rectangular spread function of known width did
{ not function well in the presence of noise. This was due to the fact that there was
no redundancy for the determination of the edge location, and because the form of
' the condition equations could lead to improper convergence when poor approxima-
tions were used.

The least squares model using a Gaussian spread function of known width, per-
formed well in the presence of noise. There was no instability associated with high
levels of noise nor with the use of parameter approximations which were poorly
selected.

The extended least squares model, in which the width of the edge spread was
determined, performed well for both types of spread function. It is believed that
the case with the rectangular spread function did not exhibit the same instability
as the previous case because the number of measurements provided a redundancy
for the determination of all parameters. This indicates that the original model
would have operated satisfactorily had there been more than one measurement in
the spread area of the step.

The precision of the estimate of edge location is dependent only upon the width of
the spread function and the signal-to-noise ratio. It does not appear to be
adversely affected when the width of the spread function must also be determined.
The adjustment is also relatively insensitive to variations in the position of the
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edge within the area being modeled, provided that the edge is at a distance greater L
than the spread width d from one extreme of the step. 4

5) Comparison with the method of edge location by moment preservation indicates é’
that for the regular model the least squares fitting provides the better solution. e
For the extended model, the two methods give comparable results at low levels of
signal noise. The most noticeable difference is for the case of perfect data, that is,
without added noise, when the least-squares method yields errors only due to
round-off. In no case does the method using moment preservation yield smaller -
errors than by the least squares technique. Ly

6) The extended least squares model has the advantages of providing estimates for '.‘_ S
both edge location and edge spread. However, when compared with the moment ;"-‘;J
preserving method it is computationally less efficient, and also requires initial oo 1

approximations for all unknowns. The moment preserving method contains a bias
when the edge is not located near the center of the area under consideration. This
is not believed to be a serious problem in most practical cases. The results indi-
cate that the method of moment preservation offers a reliable solution to the prob-
lem, without requiring any assumptions or modeling of the spread function. How-
ever, the method of least squares has the potential of providing higher accuracies,
particularly if started with good approximations. Investigations with the cross tar-
gets to follow substantiate this fact.

4. Investigations with Cross Targets

The main task of this investigation is composed of two steps:

(1) The automatic detection and approximate locations of several cross targets in a
large image using procedures based on pattern recognition and feature extraction tech-
niques; and

(2) Precise determination of the position of each cross target center using the least
squares algorithm.

Each of these tasks is briefly discussed separately.

4.1. Automatic Detection, Recognition, and Location of Cross Targets

An algorithm has been developed to detect, recognize, and locate ground cross-
targets in digital aerial imagery. The algorithm accomplishes these tasks by extracting '.*
three major features from the the ground data. Local grey level maxima which
correspond to possible cross targets serve as a detection feature. The Fourier descrip-
tors of the contour of these targets provide recognition of the cross as well as approxi-
mate location, orientation, and size of the cross. Finally, the two-dimensional moments
determine an accurate location, orientation, size, and grey level for each cross. Addi-
tionally, a modified version of the algorithm has been developed which uses only the
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Fourier descriptors. Each of these tasks is discussed in the following subsections.

4.1.1. Detection

Detection of local grey level maxima is a relatively fast and simple procedure when
working with large digital images. Since the grey level of each cross is greater than
that of the cross's surrounding background, the cross can be viewed as a local max-
imum,

To implement local maxima detection, two processes are needed. First, to insure
that true maxima are detected and not those maxima that are attributable to system
noise, atmospheric effects, etc., a circular convolutional low pass filter is applied to the L
data. In general, the filter [4] can be expressed as R

gx,y) = [ f f(a,8)b(x—a,y-p)dads (9)

where f(x,y) is the original two-dimensional image, h(x,y) is the filter function, and
g(x,y) is the resulting filtered image. Specifically,

hix,y) = -”-lr; , Vx2+y? < a .

=0, elsewhere (10)

where 2r is the diameter or size of the window. Assuming that the size of the convolv-
ing filter window is smaller than smallest expected cross size, the grey level structure of
the low pass filtered cross can be viewed as a local maximum in two-dimensions.

Second, given that the two-dimensional local maxima are present, a process must
be developed to find the peaks of these maxima. To implement this feature, each point
in the image is considered. At each point (called a hub point), the image is observed in
each of eight directions extending radially away from the hub point. For each direc-
tion, the grey level of each data point in that direction is compared to the hub point.
If each grey level is lower than the hub point and if one grey level is lower by a
specified amount, and the distance from this point to the hub point is less than a given
distance, then the hub point is a local maximum in this direction. All eight directions
must be satisfied in this way for a hub point to be considered as a two-dimensional
local maximum.

All point locations which are detected as two-dimensional local maxima serve as
possible cross locations and only these locations are considered for further analysis.

4.1.2. Recognition

The recognition process accomplishes two tasks. First, the process needs to 9_ -
discriminate buildings, road intersections, and other physical objects from crosses since ;';'-:';3:::
all these objects may be two-dimensional local maxima. Second, given that the object e
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is a cross, the process must recognize it's approximate two-dimensional orientation,
size, and location.

Recognition is accomplished with the use of Fourier descriptors. To obtain the SAR
Fourier descriptors of an object, the image must be grey value thresholded to yield a N ;jf':?_i
binary image. If the threshold is chosen correctly, the object will be segmented from RS
the background data. Typically, many thresholds are tried to successfully segment the
data. A Fourier transform is applied to the contour or boundary of the segmented ®
object to produce the object’s Fourier coefficients. The coefficients (descriptors) are
normalized for comparison to the coefficients of a "true” cross. If the descriptors match
those of a cross within a specified accuracy, the object is classified as a cross. If the
descriptors do not match, another grey level threshold is selected for segmentation until
the descriptors match or until all the possible thresholds have been exhausted in which
case the object is rejected as a cross.

% M

The boundary function of an object can be expressed as
7(t) = x(t) + iy(t) (11)

where x(t) and y(t) are the x and y position of the contour at time t as shown in Figure
3. The boundary function is complex to provide for changes in both x and y, ie., x
positions on the real axis and y positions on the imaginary axis. Also, by tracing
around the contour in a counterclockwise direction, 4(t) becomes a function of time.
The total time to trace around the contour at a uniform speed is one period T.

Given that 4(t) is a continuous, bounded, periodic function, 4(t) can be expanded
into a Fourier series [3],

27n

o iRy
)= Y ce T (12)
n=-00
where
1 T _32_’"‘_
ca = ft)e T dt (13)
To

A great deal of work has been concentrated on Fourier series expansion [2,8,10].
Stemming from this work are a few fundamental properties. Particularly of use is the
ability to translate, rotate, scale, and move trace starting point.

Translation: If an object is translated by
29 = Xo t+ iy

then
7 () =(t) + 2

which implies

-----------
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Rotation: If an object is rotated about the origin by an angle a, then the
coefficients have a constant phase term added such that

7 (1) = y(t) e

then
¢,! = ¢ el
Secale: If an object is scaled by a factor ), then
(1) = (1)
L Cn' = ch
E Starting Point Shift: If the starting point of the trace is shifted by t,, then
' 7 (1) = 7(t+to) g
. 27n ‘:},‘f_':'_'
UL S N
¢! =ce T s
N-fold Rotational Symmetry: If an object exhibits N-fold rotational symmetry Y
about the origin, then the same trace can be obtained by rotating the object by an AT
integral multiple of the angle a = % and moving the starting point clockwise by
iT =
N° )
. 27k DR
kT, N ]
t) = y(t—=r) e 1
1) = (- 30) 2
b Ay
)
¢, #0, (n-1) mod N =0 =]
¢, =0, elsewhere i
> For discrete images, the contours that are traced are polygons. The polygon con- \]
sists of linear increments in time and position, and therefore is piece-wise continuous. L RS
The Fourier coefficients can be determined from these increments by the discrete :If_:lj
- Fourier transform (DFT). The coefficients as given by the DFT are q':::::
3 T X Ay, [ -‘xg-,’i",—"- t -i-g-'l""-“- gﬂ} ;‘-..;.
un ¢y = Y e -e , n#0 (14) 3
;::' 4rn® poy Bty ]
E:; where t, = f:Ati, to =0, k is the number of sides on the polygon, and T =t,. For the \
Te i=1
L
-
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co term,

1 X1
¢ = ;z{; Ay, + 7,,-.}&,, (15)
p=1

where 7, =7,y + A7,

If an eight-directional chain-code is used in representing the discrete contour (Fig.
4), the implementation of the DFT becomes relatively easy. A look-up table can be
used and indexed by chain-code.

e

Due to the four-fold symmetry and the concavity of the cross, many of the Fourier
s coefficients are zero. In fact, only the -7, -3, 1, 5, and 0 order coefficients have non-zero
’ values among the first 8 harmonics. The zeroth order coefficient relates the position of
' the center of the cross (center of the contour). The other four coefficients are each
spaced by four, verifying four-fold symmetry. Comparison of these coefficients with
[ those extracted from contours of other objects show very little similarity. Few objects

E show four-fold symmetry and those that do, such as square buildings, are not nearly as
, concave as the cross. Thus, the Fourier descriptors provide an excellent set of features
q for discerning crosses from other ground objects.

Additionally, the Fourier descriptors provide information on location, orientation,
and size. In fact, the descriptors have to be normalized with respect to location, orien-
tation, and size before direct comparison of the coefficients can be made. As mentioned
above, the zeroth coefficient provides the location of the cross.

where ¥ and ¥ correspond to the center of the contour. The combination of the first
and minus third coefficient yields the angle of rotation with respect to the x-axis.
Determining the angle requires the use of the Fourier series properties. Since the cross
has four-fold symmetry, the next largest coefficient is c_g (c{ is the largest). To normal-
ize the coefficients, both ¢c: and ¢¢-a’ must equal zero, i.e.,

cn' = ——I :’:I ei(ﬂzo*‘a) (17)
¢01 = to + a (18)
¢¢-a = -3ty + a (19)

Solving for ty and o using Eq. (18) and (19) yields
1
to = 7(¢c,— ¢c-;) (20)
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a = (36, 4.) (21)

Thus, a is the angle of orientation. And, simply the ranges in x and y on the contour
determine an approximate size of the cross.

Only those locations which are recognized as crosses are passed along for further
analysis, along with their corresponding location, orientation, and size.

4.1.3. Location

Two parallel schemes have been developed to accurately locate the crosses as well
as determine orientation angle and cross grey level heights. Both schemes use the
preprocessed data provided by the detection and recognition routines previously dis-
cussed.

Location using Moments

In general, the cross' grey level heights (h, and h,) are distributed amoang neighbor-
ing pixels according to the location and orientation of the cross. Since the grey values
of the pixels hold much of this information, a process which uses the grey levels of the
cross as well as the general shape should do well in estimating location and orientation.
The two-dimensional grey level moments meet this requirement.

A window of data is extracted from the original image. The location of the center
of the window is determined from the Fourier descriptor location results (recognition
routine). However, rather than using the typical square window, a cross-shaped win-
dow is used. The orientation of the cross-shaped window is determined by the Fourier
descriptor orientation result. The cross-shape is amply large enough in width to extract
the largest expected cross width. The size of the cross-shaped window is determined by
the Fourier descriptor size result.

The window is used solely for noise reduction and does not bias the resulting loca-
tion and orientation. To insure that no bias is instilled, the average background grey
level is subtracted from those grey levels in the window, saturating at zero grey level.
Then the window will contain only the cross grey levels with no background grey level
present. The two-dimensional moments of the window are calculated. For an image
f(x,y), the (p +q)th order moment [9] is given by

M,, = f[xPy¥(x,y) dxdy (22)

The normalized first order moment in x and in y respectively determine the center of
mass of f(x,y), i.e.,

o o -
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7= (24

Since the cross is symmetric, this is the final estimate of the cross location. After the
moments are translated to this location, rotational moments are used to determine the
angle of the cross. To translate the original image f(x,y) by an amount (a,b) the follow-
ing transformation is performed on the original moments

M = 3 53] e orom, (25)
r=0 =0
For example,
Mg’ = a®Myg + 2aM;y + My

Due to four-fold symmetry, the fourth order rotational moments must be used to deter-
mine the angle of orientation. Rotational moments are complex and are defined by

T 0
Fu=f [rot!ef(x,y)drdd (26)
-n 0

The rotational moments may be obtained from the original moments by the transfor-
mation

-t ol
2 4ol 2

Fny = .Z% kZ)o("l) ik [Ma1kegicee; (27)
,: =

However, when the image has k-fold symmetry only the F; rotational moment needs
to be examined to determine the orientation angle.

k .
Fio = 'Eo(_i)J [?]Mj,k—j (28)
j:
For four-fold symmetry

Fao = jg(‘i)j [ﬂ M; 4

= M04 - i4M13 - 6M22 + i4.M3l + M4o (29)

The angle of orientation

is
¢Fn Fu

e

0=

. .
pe.
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(30)

N G- 4(M3; —My3) ]
= - tan

Mgy~ 6My; + My,

Finally, the background grey level is determiaed by the average grey level around the
cross, not including the cross, and the grey level of the cross is estimated by the grey
level at the center of the cross.

Location using Fourier Descriptors

This method of determining location is similar to that used in the recognition
phase of the algorithm. In that phase, different grey levels are used to threshold and
binarize an object at a specified point. The Fourier descriptors of the contours of the
binary object are compared with the Fourier descriptors of an ideal cross. If the
descriptors matched within a specified error, the preliminary location and orientation
determined by the descriptors are passed on to the final location process.

To determine accurate location and orientation of the cross, many grey level thres-
holds are used. Each grey level threshold produces a contour and therefore an estimate
of location and orientation of the cross. Of those thresholds that produce acceptable
Fourier descriptor results, only the best fifteen descriptor results are retained. Since
the Fourier descriptor error measures the match to an ideal cross, the error may be
used as a confidence number. The lower the error, the greater the confidence. This
confidence number may then be used as a multiplicative weight with which to multiply
the location result. The fifteen best confidence numbers multiplied by their respective
locations are summed to give the final estimate of the location. Likewise, the final
orientation angle is estimated using these weightings, also.

.

Each location determined by the Fourier descriptors is a sub-pixel result. How-
ever, determining the correct grey level at which to threshold the image is not com-
pletely evident by the Fourier descriptor error alone. The best location result from a
single contour does not typically occur when the Fourier descriptor error is at a
minimum. Fortunately, good, consistent results are obtained near the grey level thres-
hold that results in the minimum Fourier descriptor error as well as the threshold that
results in the best location.

Therefore, using an averaged result gives a reasonable good estimate of the location,

. but not necessarily the best result. Additionally, the averaged estimate is less suscepti-
h ble to noise variations, and thus results in a more confident answer.

4.2. Precise Target Location by Least Squares
! The least squares model given in section 3 is extended and applied to the cross tar-
! get. Figure 5 shows a cross which may be considered to be formed by a set of four rec-
. tangular components, R;, i=1, - - - 4, each with dimensions W by 1/2(L-W). The
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parameters to be estimated by the least squares method are:
(a) Coordinates of its center, (X,Y); ._‘__J
(b) Orientation angle 6; L4
(c) Background and cross grey levels, h; and h, ;
The length L and width W, {Fig. 5), are not directly and simultaneously estimated by ;:}::::
least squares at this point. They are calculated separately and input into the algo- R |
o rithm. b
The general form, Eq. (5), is linearized to the form in Eq. (8), where A is a 5 by 1 ,1
- vector of unknown corrections to approximate values for X,Y,0,h;, h,. Because the :
details of the derivations are rather involved, they and attendant assumptions are not ,.._i
included here and may be found in reference [12]. ,. ,E
5. Experimentation with Cross Data 3:21

a2 Two different sets of data have been used for the various experiments. Each is
* briefly described next.

6.1. Fort Sill Synthetic Images

The digital image files generated for the purpose of measuring the positions of
crosses made use of the simulation package SIM previously developed at Purdue
University and described by Mikhail et. al. [6]. SIM makes use of an augmented digital
data base containing both elevation information and quantized density values from a
digitized orthophotograph. This is the source from which imagery may be generated
which bears the attributes of an aerial frame photograph, but in a digital form. The
data base used contained 1778 rows by 1117 columns each, representing the Fort Sill
area of Oklahoma. It was derived from aerial photography flown at a nominal scale of
1:50000, and the spacing between data base elements amounts to 4.8 meters at ground
scale. The surface defined represents rolling terrain, with elevation ranging from 350 to o
550 meters above sea level. -

The program makes use of the collinearity condition as the basis for defining an Ry
artificial photo ray which systematically scans the object space. The appropriate image Rt

element grey shade is assigned by first determining the intersection of the photo ray :-_'I_' _'
and object space surface, and then applying suitable interpolation in grey shade from Ty
the four adjacent data base elements. By searching for the surface intersection closest G
to the camera station, hidden surfaces are effectively removed. The images thus pro- ;
duced simulate the photographic perspective with user-defined interior and exterior -L:',:.*_;
orientations, with all inherent displacements due to relief and tilt. As presently writ- “:1
ten, SIM uses a bilinear interpolation in elevation and in grey shade, but both can be -

redefined easily. “—1
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It is possible to superimpose artificial targets in the terrain model by assigning new
grey shade values to specific data base elements. In this way, such targets are included
in the image synthesis process, and appear as other natural features in the resultant
digital image file. By recording the location of the data base elements modified, the
ideal location of the imaged target may be easily determined. This provides a set of
ideal image coordinates, which are used to evaluate the errors associated with a given
target positioning algorithm. Such an approach has been used in the past in the hard-
copy measurement of dot and cross targets, by Unruh and Mikhail [13].

Minor modification of the SIM package was made to permit the generation of
several image segments within one program execution, each with the same interior and
exterior orientations, but containing only a small portion of the whole image. A single
image coordinate system was preserved by the recording of a false origin for each sub-
image. Therefore, the location of any feature could be referenced to an overall image
system defined by the orientation parameters. This approach was implemented to
allow the efficient use of SIM, since it was not at all necessary to generate a large
image, but only a set of small images each containing a feature of interest, all refer-
enced to one coordinate system.

In one experiment, a set of nine image files were generated. The exterior orienta-
tion was varied, by assigning combinations of three different values of the primary rota-
tion omega (w) and three different values of the tertiary rotation kappa ().

Thus & took on values 0°, 20°, and 45°, and w was 0°, 5°, and 15°. Within
one file eight cross targets were imaged. In all cases, the ratio between the average
pixel spacing and the data base element spacing was very roughly 1.0. Therefore the
approximate dimensions of the crosses in the resultant images were 5 pixel's length by
1 pixel's width.

Table 2 summarizes the results from the first set of experiments. As mentioned
previously two types of spread functions were used, the rectangular and Gaussian. The
range in root mean square errors in X or Y is from 0.033 to 0.086 pixel, with one case
yielding the relatively high value of 0.394.
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Image With Rectangular Spread With Gaussian Spread
RMSE RMSE RM RMSE RMSE RM
rfw fory ] o iorj i o
{pixels) | (degrees) | (grey levels) | (pixels) | (degrees) | (grey levels)
0" /o’ 0.051 0.98 139 0.088 1.55 13.7
0°/5° 0.052 1.98 13.9 0.041 1.53 13.5
0°/15° 0.062 2.38 14.2 0.054 2.70 13.6
20°/0° 0.065 1.38 14.0 0.066 2.14 13.7
20°/5° 0.041 1.68 135 0.048 2.36 13.1
20°/15° 0.045 2.80 13.0 0.048 3.01 12.7
4$5°/0° 0.033 0.98 12.7 0.040 1.20 12.6
465°/5° 0.394 22.14 16.7 0.390 22.02 18.6
45°/15° 0.041 2.68 13.1 0.038 2.63 12.6
Table 2. Cross pointing on imagery with various orientations. Each image contains eight type 1 cross targets

of dimensions roughly 5 by 1 pixels.

It can be seen in Table 2 that the low accuracy levels associated with the imagery with
k of 45° and w of 5° are accompanied by large values of root mean square error in 6.
Closer examination revealed that these values are larger than the average due to the
poor performance of the pointing algorithms in two instances. In these particular
instances, the initial approximations for @ were 0 °, when in fact the true values should
have been close to & (45 °). These poor approximations appear to have allowed conver-
gence of the adjustments to local minima, and resultant residuals in the final estimates
were on the order of 45° in orientation and 1.0 pixel in position. The approximations
were calculated by a very simple procedure employing cross-correlation with cross tem-
plates. The use of pattern recognition and feature extraction algorithms for deriving
approximations totally alleviates this problem as shown later on in this paper.

§.2. Experiments with the Arizona Test Data

Another test image was obtained by generating cross targets on a digital image
using the Arizona test data. This test data was derived from a digitized stereo model
formed by two nearly vertical images taken in October 1966 near Guadelupe, Arizona.
The cross targets were superimposed on the digitized image.

A 512 x 512 segment of the digital image is used. Twenty-five cross targets were
randomly selected and placed on the image. Cross sizes with aspect ratios of 1x7, 1x10,
and 1x13 were used. These ratios are considered more practical than the 1x5 ratio used
in earlier experiments. The crosses were arbitrarily rotated at various orientation
angles. Furthermore, noise was added to the crosses according to a distribution having
the same standard deviation as the image background around each cross. It is recog-
nized that this is a severe amount of noise, but we felt that if the algorithms performed
reasonably well in this case that we can be confident of the results from other cases
with less noise.
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Table 3 lists the RMS values calculated from the discrepancies at the 25 crosses
for four different cases. Case A is the moment-based method. In case B, only the
values of X,Y,# from the moment method are used as approximations in the least
square algorithm. In case C, all five values of X,Y, 4, h; h, are entered into the least
squares algorithm. Finally, case D is the same as case C, except that instead of using
fixed values for the cross length L and width W, a simple routine is written to estimate
these two parameters prior to entering into the least squares algorithm. The last case

D gives the lowest RMS values of about 0.05 pixel in X and 0.03 pixel in Y, and may
therefore be considered as the best that can be expected.

Case RMS X | RMS Y AN
(pixels) | (pixels) v

A | Moment-based Method 0.200 | 0.182 ®

M} o
B | Moment & Least Squares (3 param) 0.059 0.057 "

[M/LS (3)] :
C | Moment & Least Squares (5 param) 0.050 0.036

[M/LS (5)]
D | Moment & Least Squares (5+2 param) { 0.053 0.029

[M/LS (5+2)]

Table 3. RMS values for different cases.

Accepting this level of accuracy in determining the location of crosses in digital
images, the next phase of the investigation concerns the effect of image processing
operations on the location of such targets. The first image processing operation con-
sidered is image compression as discussed in the following section.

8. Geometric Effect of Digital Image Compression

The next group of experiments made use of image files over the Arizona test area
with 24 superimposed cross targets, as discussed in Section 5.2. Here, however, two S
different images are used; one in which the cross targets are without any noise (thus . 2
simulating reseau marks), and the other with added noise. At each target, the added

noise has a more realistic standard deviation which is % of the background standard

deviation around the target. For each of these two sets four cases are considered. (See
Figure 6 as an example)

1. The original image at 8 bits/pixel

2. An image which has been compressed to 2 bits/pixel
3. An image which has been compressed to 1 bit/pixel
4. An image which has been compressed to 1/2 bit/pixel
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In cases 2, 3, and 4, a two-dimensional adaptive cosine transform was used as the
compression algorithm [1]. For each of the eight possible image files described above,
two different processing procedures were used:

A. An algorithm based on Fourier descriptors and moments is used for detection
and location, followed by the least squares algorithm for precise positioning.

B. An algorithm based only on the Fourier descriptors (i.e. without the use of
moments) followed by the least squares algorithm.

Therefore, there are 16 cases in total. Unfortunately, we missed one case, and hence
the results of only 15 cases are given. We used the letter F to denote Fourier descrip-
tors; M to denote Moments (after Fourier); 8, 2, 1, and 0.5 to represent the compression
cases; and the prefix N to indicate cases with noise. A general remark from these cases
is that as the number of bits decreases the location of the crosses changes which implies
geometric shift. Furthermore, due to significant distortion to some crosses, the algo-
rithm does not recognize them as such and therefore the total number of crosses is
reduced. As an example, only 9 crosses out of a total of 24 were found as crosses for
the case of 0.5 bit/pixel for noiseless data using the Fourier descriptors.

The results for fifteen cases are summarized in Table 4. Considering the original
imagery (8 bit/pixel), the location of a cross can be achieved with an accuracy of 0.03 -
0.05 pixel. Compression to 2 bit/pixel leads to 0.08 - 0.13 pixel; to 1 bit/pixel to 0.16 -
0.18 pixel; and 0.5 bit/pixel to 0.36 - 0.71 pixel.

. "‘:.. .
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. Method Case Number of | Without Least Squares With Least Squares
k Targets RMS (pixels) RMS (pixels)
X Y XY X Y XY
E Fourier | Noiseless
: F8 24 0.080 | 0.054 | 0.096 | 0.027 | 0.022 | 0.035
. F2 24 0.095 | 0.093 | 0.133 | 0.049 | 0.042 | 0.065
F1 23 0.200 | 0.225 | 0.300 | 0.144 | 0.143 | 0.203
F.5 9 0.275 | 0.350 | 0.445 | 0.319 | 0.171 | 0.362
Noise
r. NF8 24 0.086 | 0.104 | 0.135 | 0.041 ]} 0.033 | 0.053
. NF2 24 0.141 | 0.090 | 0.167 | 0.058 | 0.050 | 0.077
NF1 23 0.263 | 0.155 | 0.305 | 0.135 | 0.131 | 0.188
NF.5 - - - - - - -
: Moment | Noiseless
k M8 24 0.195 | 0.259 | 0.324 | 0.027 | 0.020 | 0.034
' M2 24 0.224 | 0.299 | 0.374 | 0.037 | 0.037 | 0.052
) M1 23 0.423 | 0.482 | 0.641 | 0.139 | 0.103 | 0.173
M.5 9 0.572 | 1.055 | 1.200 | 0.322 ] 0.296 | 0.437
Noise
NMS8 24 0.247 | 0.179 | 0.305 | 0.038 | 0.030 | 0.048
NM2 24 0.348 | 0.272 | 0.442 | 0.079 | 0.112 | 0.137
NM1 23 0.403 | 0.354 | 0.536 | 0.113 | 0.126 | 0.169
NM.5 9 0.774 | 0.815 | 1.124 | 0.237 | 0.670 | 0.711
Table 4, Summary of Fourier and Moment methods.

7. Conclusions and Recommendations

1) It is possible to locate a cross, with added noise, in a realistic digital aerial image
to an accuracy of 0.03 to 0.05 pixel.

2) Techniques of pattern recognition and feature extraction are capable of automati-
cally detecting and locating cross targets in digital aerial images.

3) The least squares algorithm, following the results from either the Fourier descrip-
tor or Moment algorithms, produces optimum cross positions.

4) Digital image compression causes image features, such as crosses to shift in loca-
tion. The methods devised here can quantify such shifts.

5) At low bit/pixel rates, features get distorted and therefore cannot be recognized.
This is a serious problem that will need further investigation.

6) Other digital image processing operations will be investigated in 2 manner similar
to compression.

7) It is hoped that the ability to quantitatively assess the effects of digital image pro- e
cessing operations will lead to further study of the causes for such geometric -4
changes. el
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DETECTION AND SUB-PIXEL LOCATION OF OBJECTS
IN DIGITIZED AERIAL IMAGERY

Mark L. Akey and O. R. Mitchell
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907, USA

ABSTRACT

This paper deals with the detection and precision location
of ground targets in the form of synthetic crosses on real
terrain data. Location of crosses using Fourier descrip-
tors can be achieved to within 0.07 pixels. This method
is used to monitor the geometric distortion caused by
compressing the data with the cosine transform. Results
show geometric ‘‘shifts” up to 0.5 pixels may occur after
compression. Mean and median filters are applied to syn-
thetic test data. These filters show a minimal amount of
geometric “shift” in the presence of noise. The mean
filter reduces location error to 0.025 pixels. A new circu-
lar two-dimensional median filter is introduced and is
shown to instill less geometric distortion than the conven-
tional rectangular median filter.

1. Introduction

A long standing concern has been the ability to
-extract accurate geometric information from digital
images. Recent work [1] has shown cross location meas-
urements that are accurate to within one third of a pixel
are humanly possible from appropriately digitized images.
However, due to inconsistencies getween different human
observers this margin of accuracy is all but lost. In aerial
imagery, the cross is commonly known either as a reseau
mark where the cross is directly exposed on the film for
registration purposes or as a fiducial mark where the
cross is an actual ground feature. The ultimate goal of
this work is to study the effects that common image pro-
cessing techniques have on the metric fidelity of the
image. Three different techniques are studied; cosine
image compression, mean, and median filtering. In addi-
tion, the fidelity of the square two-dimensional median
filter is compared to a new circular median filter.

2. Automatic Detection, Recognition, and Loca-
tion of Cross Targets

An algorithm is developed to detect, recognize, and
locate ground cross targets in digital aerial imagery. The
algorithm accomplishes these tasks by extracting three
major features from the the ground data. Local grey
level maxima which correspond to possible cross targets
serve as a detection feature. The Fourier descriptors of
the contour of these targets provide recognition of the
cross as well as approximate location, orientation, and
size of the cross. Finally, the two-dimensional moments
determine an accurate location, orientation, size, and grey
level for each cross. Additionally, a modified version of
the algorithm is developed which uses only the Fourier
descriptors in determining the final precision location.

Supported in part by the U.S. Army Research Office.
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2.1. Detection

Since the grey level of each cross is greater than that
of the cross’s surrounding background, the cross can be
viewed as a local maximum. To implement local maxima
detection, two processes are needed. First, to insure that
true bright regions are detected and not those maxima
that are attributable to noise, a circular convolutional
low pass filter is applied to the data.

Second, a process must be developed to find the
maxima. To implement this feature, each point in the
image is considered. At each point (called a hub point),
the image is observed in each of eight directions extend-
ing radially away from the hub point. For a given direc-
tion, if each grey level is lower than the hub point and if
at least one grey level is lower by a significant amount,
and if the distance from this point to the hub point is less
than a maximum distance, then the hub point is con-
sidered a local maximum in this direction. All eight
directions must be satisfied in this way for a hub point to
be considered as a two-dimensional local maximum.

2.2. Recognition

The recognition process accomplishes two tasks.
First, the process needs to discriminate buildings, road
intersections, and other physical objects from crosses
since all these objects may be two-dimensional local max-
ima. Second, given that the object is a cross, the process
must recognize it's approximate two-dimensional orienta-
tion, size, and location.

Recognition is accomplished with the use of Fourier
descriptors. To obtain the Fourier descriptors of an
object, the original unfiltered image must be grey value
thresholded. to yield a binary image. If the threshold is
chosen correctly, the object will be segmented from the
background data. Typically, many thresholds are tried
to successfully segment the data. A Fourier transform is
applied to the contour or boundary of the segmented
object to produce the object’s Fourier coefficients. The
coeflicients (descriptors) are normalized for comparison to
the coeflicients of a ‘‘true” cross. If the descriptors match
those of a cross within a specified accuracy (typically
90% or higher), the object is classified as a cross. If the
descriptors do not match, another grey level threshold is
selected for segmentation until the descriptors match or
until all the possible thresholds are exhausted in which
case the object is rejected as a cross.

The boundary function of an object can be expressed
as

(1) = x(t) + iy(t) (1)

where x(t) and y(t) are the x and y position of the contour
at time . The boundary function is considered to be
complex to provide for changes in both x and y. The
total time to trace around the contour at a uniform speed
is one period T.
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Given that +(t) is a continuous, bounded, periodic
function, 7(t) can be expanded into a Fourier series (2],

o 1,
) = 2 ce T

a=m-ap

t]]
where

1 T NE-L 48

€ = ?f 1{t)e T &t (3)
[}

A great deal of work has been concentrated on Fourier

series expansion [3].

For discrete images, the contours that are traced are
polygons. Each polygon consists of linear increments in
time and position, and therefore is piece-wise continuous.
The Fourier coefficients are determined from these incre-

ments by the direct Fourier transform (DFT). The
coefficients as given by the DFT are
©= ’{%At, e e , n#0 (4]

where t,=}5At,, =0, k is the number of sides on the

i=]
polygon, and T=¢,. For the ¢, term,

1 &1 ]
w=TLi-an + A (5)
o T 2::1 2 P {2t} "P
where 7, = 7, + A7,
. If an eight-directional chain-code is used in

representing the discrete contour, the implementation of
the DFT becomes relatively easy. A look-up table can be
used and indexed by chain-code.

Due to the four-fold symmetry and the concavity of
the cross, many of the Fourier coefficients are zero. In
fact, only the -7, -3, 1, 5, and O order coefficients have
non-zero values among the first 8 harmonics. The zeroth
order coefficient relates the position of the center of the
contour (cross). Few objects show four-fold symmetry
and those that do, such as square buildings, are not
nearly as concave as the cross. Thus, the Fourier descrip-
tors provide an excellent set of features for discerning
crosses from other ground objects.

Additionally, the Fourier descriptors provide infor-
mation on orientation and size. Before direct comparison
of the Fourier descriptors can be made, the coefficients
must be normalized with respect to orientation and size.
The combination of the first and minus third coefficient

iclds the angle of rotation with respect to the x-axis.
etermining the angle requires the use of the Fourjer
series properties. Since the cross is four-fold symmetric,
the next largest coefficient is c., (¢, is the largest). To

‘I.. normalize the coefficients, both ¢.' and ¢. ' must equal
- zero, i.e.,

! ! = s el(l‘o*a) {6)
. L Jes

\ b=tota. 6, =B ta (7)
:: Solving for t, and a using Eq. (18) and (19) yields

. 1

: o= o) . a= {06t e) ®)
\ Thus, a is the angle of orientation. And, simply the
. ranges in x and y on the contour determine an approxi-
. mate size of the cross.
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2.3. Location

Two parallcl schemes have been developed to accu-
rately locate the crosses as well as determine orientation
angle and cross grey level heights. Both schemes use the
results provided by the detection and recognition routines
previously discussed.

Location using Moments

In general, the cross’ grey level heights Sb, and b;)
are distributed among neighboring pixels according to the
location and orientation of the cross. Since the grey
values of the pixels hold much of this information, a pro-
cess which uses the grey levels of the cross as well as the
general shape should do well in estimating location and
orientation.

A window of data is extracted from the original
image. The location of the center and the size of the
window is determined from the Fourier descriptor loca-
tion results (recognition routine). The two-dimensional
moments of the window are calculated. For an image
f(x.y), the (p+q)th order moment [4] is given by

My = [ f xPy¥(x,y)dxdy (9)

The normalized first order moment in x and in y respec-
tively determine the center of mass of f(x,y), i.e.,
My ' Moo
Since the cross is symmetric, this is the final estimate of
the cross location. After the moments are translated to
this location, rotational moments ate used to determine
the angle of the cross. To translate the original image
f(x,y) by an amount (ab) the following transformation is
performed on the original moments
P
-\ Plia r .
My = gg[rl[s)ap bT* My (11)
Due to four-fold symmetry, the fourth-order rotational
moments must be used to determine the angle of orienta-

tion. The rotational moments (4] can be obtained from
the original moments

F4‘ = Mg — i4M;g - 6My + i"Ma, + MQ
The angle of orientation is

X =

(10)

(12)

PP _ 1 V[ 4Mg ~My)
5T (VoM + Mg (13)

Finally, the background grey level is determined by the
average grey level around the cross, not including the
cross, and the grey level of the cross is estimated by the
grey level at the center of the cross.

Location using Fourier Descriptors

To determine accurate location and orientation of
the cross, many grey level thresholds are used. Each grey
level threshold yields a contour and therefore an estimate
of the cross's location and orientation. Of those thres-
holds that produce acceptable Fourier descriptor results,
only the best descriptor results are retained. Since the
Fourier descriptor error measures the match to an ideal
cross, the error may be used as a confidence number.
The lower the error, the greater the confidence. This
confidence number is used as a multiplicative weight.
The location and angle of each contour is weighted by
this number and summed to obtain the fina) location and
angle. This process gives surprisingly good results with
smaller variance than that obtained from just one Fourier
deseriptor result.
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The technique is remarkably similar to the moment
technique in one important way. The grey level moments
use a continuum of grey values sammed according to the
moment basis functions to produce the center of the
cross. Likewise, the Fourier descriptors use a continuum
of grey level thresholds to produce different center of cor-
tour locations. However, only those Fourier descriptors
results which match a cross are kept. This selective pro-
cess removes those contours which are greatly effected by
noise. The grey level moments on the other hand cannot
be manipulated in this way, and must use all grey values.

3. Experiments with Cross Data

Two different sets of data have been used for the
various experiments. Each is described briefly as well as
the testing applied to each.

3.1. Geometric Effect of Cosine Compression

A test image is obtained by generating cross targets
on a digital image. This aerial image is from a rural
Arizona area. A cross is generated by integrating over
that portion of the pixel which contains any part of the
cross. The cross targets are then superimposed on the
digitized image.

Twenty-four cross targets are randomly selected and
placed on the image. Placement is done at an arbitrary
sub-pixel location. Cross sizes with aspect ratios of 1x7,
1x10, and 1x13 are used. The aspect rutio relates the
width of one leg of the cross to the length of the cross,
i.e., 1 unit to 10 units. The widths range from 1 pixel to
1.5 pixels. The crosses are arbitrarily rotated at various
orientation angles. Additionally, zero-mean Gaussian
random noise is added to the crosses with a standard
deviation similar to the standard deviation of the image
background around each cross. Two data sets are
created; one where a standard deviation of 25% of the
background noise is added to the crosses to simulate
fiducial marks and one where no noise is added to simu-
late reseau marks.

For each of the two Arizona test images, a two-
dimensional adaptive cosine transform compression
scheme [5] is applied. The resulting images are then
reconstructed using &, 2, 1, and 0.5 bits/pixel. For each
set, the grey value moment precision technique as well as
the Fourier descriptor precision technique is applied.
Table 1 shows the mean error in location of each
compressed image for both location methods.

As expected, the greater the compression, the greater
the error in location of the cross. It should also be noted
that for the case of 0.5 bit/pixel compression, many
crosses are not recognized (10 crosses) due to the large
amount of distortion to the crosses. Many of these
crosses are distorted due to the segmenting of the image
into 18 by 16 sub-images, the typical size used in Cosine
transform compression.

Table[l] Mean location error in pixels from the grey
fevel moment method and Fourier descriptor
method. Each method was applied to the
various cosine compressions of the Arizona

test data.
Compression No Noise 25% Noise
(bits/pixel) | Moments | FD | Moments | FD
8.0 0.255 0.073 0.241 0.107
20 0.315 0.107 0.325 0.132
1.0 0.527 0.253 0.458 0.224
0.5 0.980 0.470 0.880 0.438
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3.2. Geometric Effects of Mean and Median Filters

To better isolate the effects of processing, new test
data is artificially generated with known noise statistics.
The base image consists of 49 crosses with the aspect
ratio 1x7 oriented at random angles and placed at ran-
dom sub-pixel locations on a flat field. The width of the
legs of each cross is set at 3 pixels, thereby making each
cross 21 pixels in length. This larger size is necessary to
prevent the median filter from removing large portions of
the crosses. Three additional images are created by
adding varying amounts of independent zero-mean Gaus-
sian random noise to this base image. The standard devi-
ation of the noise is set at 2093, 40%, and 60% of the
center step height (grey value) of the cross.

On each of the above images, eight separate
processes are performed. These processes included 3 by 3
mean and median filters and circular mean and median
filters with diameter 3. The above processes are repeated
using 5 by 5 window. and diameters of 5 pixels. To the
authors' knowledge, the circular median filter is yet to be
introduced in the literature. For the circular window,
those pixels on the boundary are weighted according to
the amou' t of pixel interior to the circle. This weight
should signify the percentage of that pixel's grey value.
However, rather than summing up the total weighted
pixel's grey value as in the mean operation, the grey
values along with their respect weights are rank ordered
lowest to highest according to the grey value. As the
grey values are ascended in the ranked order, a running
sum of the area that each grey value represents is kept.
When the sum reaches 50 of the total circle area, the
current grey value is the resulting median of the circular
window.

To the four test images, the Fourier descriptor preci-
sion method is applied. This method is preferred over
the moment method due to it’s superior performance on
the Arizona test set. Table 2 shows the precision result
for each noise case prior to any processing. The mean
value is the average unsigned error in location. These
statistics follow a Rayleigh distribution and are com-
pletely characterized by the mean. Note, for the no noise
case, the method does not give perfect locations.

Median Results

Table 2 shows the result after processing the image
with both the square and circular median filter of size 3
pixels. It should be noted that the zero noise case results
in only a minor shift in location for both cases. Since the
median filter is known to remove corners from image
features some amount of distortion should be abserved.
However, due to the symmetry of the cross, the distortion
is symmetric over the entire cross. Therefore, no shift in
location is apparent from the mean undirected crror. For
the 20% and 40% noise cascs, the median filters improve
the location results only slightly. However, the 60 case
results in a marked reduction in the error.

Table 2 shows the location results from the square
and circular median of size 5. Contrary to the size 3
case, there is a slight increase in location error over that
of the non-filtered data. The window size is at times too
large for the feature causing the median filter to remove
the ends of the cross legs. Only in the highest noise case
does the median filter increase the accuracy of the
Fourier descriptors, thereby outweighing the effects
caused by distortion from the filter. Additionally, the cir-
cular median results in less error than the square median.
This can be attributed to the additional bias the square
median has on orientation.
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Table[2] Mean location error in pixels for synthetic test image using
Fourier descriptor method. Square and circular median and
mean filter results are shown using window sizes of 3 and 5 pix-
els in the presence of various amounts of noise. -—
)
Before Median Meas .
Noise P . Square Circular Square Circular oA
rocessing e
3x3 5x5 d=3 | d=5 3x3 5x5 d=3 | d=5 R
0% 0.061 0.078 | 0.091 | 0.078 | 0.081 | 0.026 | 0,043 | 0.026 | 0.033 N
20% 0.108 0.093 | 0.114 { 0.094 | 0.105 | 0.087 | 0.118 | 0.081 | 0.124 o
40% 0.207 0.188 | 0.255 | 0.184 | 0.239 | 0.184 | 0.258 | 0.185 | 0.250 [
60% 0404 | 0249 | 0359 [ 0.242 | 0.304 | 0.220 [ 0.300 | 0.214 | 0.279 '
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APPENDIX F

The Circular Median Filter

As more research is done in the study of geometric fidelity and how it is aflected
by common digital processes, it becomes apparent that isotropic filters preserve this
fidelity much better than non-isotropic filters. It is thought that circular convolutional
windows will produce less distortion in terms of geometric accuracy. Thus, some
thought is directed toward the ability to modify existing rectangular window filters.

Due to the rather simple modification of the square mean filter to the circular

type, it seems that the modification of the square median filter should also be simple.

_ For the circular window, those pixels on the boundary are weighted according to the
amount of pixel interior to the circle. This weight should signify the percentage of that
[ pixel's grey value. However, rather than summing up the total weighted pixel's grey

value as in the mean operation, the grey values along with their respective weights are
rank ordered lowest to highest according to the grey value. As the grey values are
ascended in the ranked order, a running sum of the area that each grey value
represents is kept. When the sum reaches 50% of the total circle area, the current grey
value is the resulting median of the circular window.

Though the circular median retains its non-linear nature, it has no orientation bias
as does the square median. One disadvantage of the square median is that it ‘“lops off”
grey level corners in the image. Unfortunately or not, this feature is also present in the
circular median. However, the circular median prefers no specific orientation for this to
occur. On the other hand, the square median is inconsistent in this response when the
corner is not aligned with the axes.
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